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Abstract

Using the methods of holography we calculate the two-point function
and entanglement entropy in heavy ion collisions, modeled by colliding
gravitational shock waves in Anti-de Sitter spacetime. The calculation
reduces to finding extremal surfaces (or geodesics, using the symmetry
of the investigated boundary region) in the gravitational problem. A
Mathematica package, capable of finding geodesics for several different
scenarios using relaxation methods, was developed as part of this work.
Using two different initial conditions, wide and narrow shock waves, we
find qualitatively different behavior of the calculated quantities. This
allows to use the entanglement entropy as order parameter to distin-
guish between the transparency and full stopping scenario of colliding
shock waves.

Kurzfassung

Unter Verwendung holographischer Methoden rechnen wir die Zwei-
punkt-Korrelationsfunktion und die Entanglement Entropie für Schwer-
ionen-Kollisionen aus, welche als Kollision von Gravitationsschockwel-
len in 5 dimensionaler Anti-de Sitter Raumzeit modelliert werden. Die
Berechnung dieser Größen reduziert sich auf der Seite der Gravita-
tionstheorie auf die Berechnung extremaler Flächen (bzw. Geodäten,
unter Verwendung der Symmetrie der untersuchten Region). Im Rah-
men dieser Arbeit wurde ein Mathematica Package entwickelt, das diese
Berechnungen mittels Relaxationsmethoden für verschiedene Szenarios
ausführen kann. Unter Verwendung zweier verschiedener Anfangsbe-
dingungen, breiten und schmalen Schockwellen, zeigt sich qualitativ
unterschiedliches Verhalten der berechneten Größen. Das erlaubt es,
die Entanglement Entropie als Ordnungsparameter für die Unterschei-
dung zwischen Transparenz und vollem Abstoppen der kollidierenden
Schockwellen zu verwenden.
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1. Introduction

In the history of physics, it often turned out to be useful to apply methods devel-
oped in one field to some other one, even if there seemed to be no connection in
the first place. This can result in the unification of two theories (electricity and
magnetism) or reveal dualities (wave-particle), which help to describe phenomena
more precisely. Of course, the unification of all interactions is still an open problem
many physicists are working on.
These two very different examples encourage to combine three of the most inter-
esting fields of physics in this work. General relativity with black holes and all
the other aspects of astrophysics is especially after the detection of gravitational
waves a very interesting topic. Already mentioned above, the second field is the
unification of interactions, as every physicist has the wish to describe nature with
one unified theory for which string theory might be a candidate. The third field
involved in this work is high energy physics. With large projects at institutions
like CERN amongst others, it is possible to search for supersymmetry and test
theories from the experimental point of view.

Similar to a plasma generated by heating up a gas above a certain temperature
(energy), there exists a plasma state in nuclear physics. Like nuclei and electrons,
which decouple to form the plasma, quarks and gluons are no longer confined
to hadrons above a characteristic energy scale and form a so called quark-gluon
plasma. To reach this scale of energy density, collision experiments with heavy
ions are necessary. At the LHC lead ions are accelerated close to the speed of
light and then brought to collision, whereas gold ions are used at RHIC. Providing
a large amount of matter compared to single protons, enough energy is created
to generate a quark-gluon plasma. Although quantum chromodynamics describes
all aspects of this new matter state, it is not possible to perform all calculations
within this framework at present. Searching a new framework to allow more cal-
culations, methods of string theory and general relativity are combined to tackle
these problems.

This idea has led to the holographic principle and particularly to the AdS/CFT
correspondence, which has been used in numerous recent works. Mainly the en-
ergy, pressure components and thermalization time of the quark-gluon plasma have
been studied. Going beyond that we are interested in the correlations within the
system. Therefore we look at quantities like two-point functions and the entangle-
ment entropy (see section 2.4).
Besides all the theoretical aspects of the different fields needed to combine them,
also numerical methods are required in this work. Differential equations like Ein-
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stein’s equations or the geodesic equations of motion need to be solved numerically,
since there is no analytic solution known for our system.

This work is organized as follows: In chapter 2 the ingredients of this work are in-
troduced; Principles and methods of high energy physics (i.e. heavy ion collisions),
holography (i.e. AdS/CFT correspondence), quantum physics (i.e. entanglement
entropy) and general relativity (i.e. Einstein’s equations in Anti-de Sitter space),
which are used in the remainder of the work, are explained. In chapter 3 the
methods used to solve Einstein’s equations are explained using a simple model,
as well as the results for colliding shock waves are presented. The calculation of
two-point functions and the entanglement entropy is presented in chapter 4. The
results of this calculation are discussed in chapter 5. In chapter 6 a conclusion and
thoughts on further interesting calculations and open questions are given. Lastly,
the Mathematica package created within this work is described in appendix A.
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a) Gold ions at RHIC b) Lead ions at LHC

Figure 1: These images display the tracks of particles created in HICs, seen by the
detectors STAR (at RHIC [1]) and ALICE (at LHC [2]).

2. Preliminaries

2.1. Heavy ion collisions

In high energy physics collision experiments are carried out at particle accelera-
tors. Instead of elementary particles, for which the processes are understood quite
good, at RHIC and partly at LHC heavy ions are used. Such collisions create
a greater volume with matter at high energy density to simulate “macroscopic”
amounts of matter. The observations show qualitatively new phenomena, different
to those resulting from interactions of a few elementary particles. This setup is
the only experimental approach to many body quantum chromodynamics (QCD).
Gold ions at RHIC and lead ions at LHC are accelerated close to the speed of light
and collide with total center of mass energies of about 40 TeV and 600 TeV respec-
tively. The result of such heavy ion collisions (HIC) is the production of a huge
amount of particles (see Fig. 1 for a schematic illustration). The multiplicities of
charged particles produced is shown in Fig. 2. In total this results in about 5000
particles produced at RHIC while this number is five times larger for the energies
reached at LHC.

In the early stages of a collision, energy densities exceeding the confinement scale
TC , above which quarks and gluons are not confined into hadrons anymore, are
reached. A new, interesting state of matter is formed, the quark-gluon plasma
(QGP). Contrary to expectations this plasma behaves like a strongly coupled fluid
instead of a weakly coupled gas. This is concluded from the fact that relativistic
hydrodynamic calculations work surprisingly well as a description for the dynam-
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a) Gold ions at RHIC b) Lead ions at LHC

Figure 2: Charged particle multiplicities measured in central HICs by the detectors
STAR (at RHIC [3]) and ALICE (at LHC [4])

ical behavior of the plasma. As hydrodynamical calculations give an accurate
description already at very early stages, this also suggests that the plasma ther-
malizes locally very fast, about ttherm ≈ O(1) fm

c
, which corresponds to 3 × 10−24

seconds after the collision.

This leads to the question, what mechanisms are responsible for this fast ther-
malization process. In order to find an answer we need to study the early non-
equilibrium dynamics of the system. Due to strong coupling calculations cannot
be performed in perturbative QCD. This is in principle not a problem for lattice
QCD, but this framework is not suited well to treat the dynamics of the collision.
Therefore alternative methods are needed. A promising candidate is the AdS/CFT
correspondence, described in the next section.

2.2. AdS/CFT correspondence

In modern physics, the gauge/gravity duality provides a link between quantum
field theory and quantum gravity. Nearly 20 years ago Maldacena [5] conjectured
the equivalence of type IIB superstring theory on AdS5 × S5 and SU(Nc) N=4
supersymmetric Yang-Mills theory, a conformal field theory (CFT) on the four
dimensional boundary of Anti-de Sitter space (AdS5). This AdS/CFT correspon-
dence is a realization of the holographic principle introduced by ’t Hooft [6] and
Susskind [7], which states that for theories with gravity all information within a
volume is encoded in a theory without gravity on its boundary. Considering a
black hole, calculations show that its entropy (which describes the information
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content) is proportional to the area of its event horizon and not its volume. This
is expressed in the Bekenstein-Hawking law

SBH =
A

4GN

, (2.1)

where A is the area of the horizon surface and GN is Newton’s constant.

A feature of AdS space is that its boundary is conformal equivalent to Minkowski
space. This is the natural geometry to study quantum field theory without gravity.
Therefore one can consider the QFT to “live” on the boundary of the AdS space-
time in analogy to a hologram, which encodes the image of a three dimensional
object in a two dimensional surface. The CFT contains all information of gravity
in AdS space of one dimension higher. This connection allows to translate expec-
tation values of operators of the field theory into fields of the gravitational theory
and vice versa. Therefore it is possible to perform calculations on either side of
the duality and then translate the result to the other side. Because gauge/gravity
duality is a weak/strong duality, strongly coupled fields on the field theory side
are related to weakly coupled fields on the gravity side and vice versa. This makes
many calculations that are very hard (or even impossible due to computational
limits) on one side very simple on the other side.

For our purposes, the correspondence is especially useful in the limits of large
gauge group rank and large ’t Hooft coupling λ. In this particular limit, the full
string theory action can be approximated with classical supergravity, which makes
calculations much easier. As lattice calculations show (Fig. 3), in the deconfined
phase of QCD the thermodynamical quantities only depend slightly on Nc.

In the field of quantum gravity this characteristic of the duality allows to address
problems, which were out of reach of perturbation theory. Performing field theory
calculations and translating the results to the gravity side gives further insight
into quantum gravity and problems, such as the black hole information paradox
can be addressed [8]. Another field of research is condensed matter physics, where
some phenomena of strongly correlated systems are investigated using generaliza-
tions of the AdS/CFT correspondence [9]. Our interest focuses on the applications
in quantum field theory, where AdS/CFT can be used to describe strongly cou-
pled dynamical systems, which are currently out of reach for other methods. For
example the QGP mentioned before in section 2.1.
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a) b)

Figure 3: Lattice calculations for the energy and trace anomaly of the QCD plasma
at different NC . [10]

2.3. Holographic description of heavy ion collisions

A conformal field theory, namely N=4 supersymmetric Yang-Mills (SYM) the-
ory, can be seen as a toy model for the deconfined phase of QCD. Fig. 4 shows
the phase diagram of QCD. Although N=4 SYM and QCD are rather different
theories, at the energies reached in HICs they share some properties. In case of
non-zero temperature some differences vanish, which may suggest that SYM is a
reasonable toy model for QCD. For instance, above the critical temperature (Tc)
QCD is not confined anymore, while N=4 SYM is not confined at all. Further
the scales of chiral symmetry breaking and the running coupling constant are not
relevant above Tc (as long as T is not asymptotically large), whereas N=4 SYM
is a scale invariant theory at any temperature. Also, supersymmetry in N=4
SYM is broken at non-zero temperature. Figure 3a) shows that QCD enters a
conformal window above 1.5T/TC , where the energy density increases very slowly.
This supports the assumption of strong coupling, as the Stefan-Boltzmann value
for the free theory is reached just at asymptotically large temperatures. Further,
figure 3b) shows the trace anomaly of the QCD plasma, which decreases for large
energies. The trace anomaly is zero in a conformally invariant theory. In HICs
the energies are in a region above TC , where the QGP can be assumed to be con-
formally invariant.
Additionally, the large Nc limit and the correspondence to AdS5 make it possi-
ble to calculate the ratio of shear viscosity over entropy density η

s
= 1

4π
[11, 12].

Measurements at the RHIC experiments suggest an upper bound for this ratio of
η
s
≤ 0.25 [13]. This holographic result is in much better agreement with this bound

than results from perturbative QCD calculations.
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Figure 4: QCD phase diagram with the temperature and chemical potential as
axes. Above the critical temperature the deconfined phase (QGP) is
reached. [14]

Our purpose is to describe collisions of heavy ions on the gauge theory side. This
can be modeled by the collision of gravitational shock waves on the gravity side
[15, 16] (for numerical calculations see [17, 18]). Further the formation and ther-
malization of the plasma corresponds to the formation and equilibration of a black
hole. The holographic dictionary allows to extract the expectation value of the
energy momentum tensor (EMT) Tµν from these models. This quantity has been
extensively studied in a fully dynamical simulation of HICs and gave surprisingly
accurate predictions for particle spectra [19].

Going beyond these local observables, we want to study the early time dynamics in
such collisions. Therefore we are interested in non-local quantities like two-point
functions and the entanglement entropy (EE), introduced in the following section.

2.4. Entanglement entropy

Consider a quantum mechanical or a quantum field theory (QFT) system at
zero temperature, which is described by the pure ground state |Ψ〉. For a non-
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Figure 5: Dividing the system into subsystems A and B.

degenerate wave function |Ψ〉 the density matrix is given by

ρtot = |Ψ〉〈Ψ|, (2.2)

and the von Neumann entropy is zero

Stot = −tr (ρtot log ρtot) = 0. (2.3)

If we divide this system into two subsystems A and B (see Fig. 5), we can write the
total Hilbert space as direct product of the two Hilbert spaces of the subsystems
A and B as follows

Htot = HA ⊗HB. (2.4)

An observer in subsystem A without access to B computes observables with the
reduced density matrix ρA

ρA = trB (ρtot) , (2.5)

where the trace is taken over the subspace HB only. The EE of the subsystem A
is defined as the von Neumann entropy of the reduced density matrix ρA

SA = −trA (ρA log ρA) . (2.6)

This quantity provides a measure for how strongly entangled the state |Ψ〉 is. If
|Ψ〉 can be written as a product of two elements of the subspaces, there is no
entanglement at all, i.e. SA = 0.

The EE contributes to the understanding of quantum physical phenomena in many
fields of physics. For example, in condensed matter physics quantum phase tran-
sitions cannot be described with classical quantities, as they do not take entangle-
ment into account. Here EE is a candidate for an order parameter, distinguishing
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different phases. Such systems at quantum critical points can be described with
conformal field theories. This property justifies the AdS/CFT approach used later
on. In two dimensional CFT the EE can be calculated analytically [20, 21]

SA =
c

3
log

(
ξ

a

)
, (2.7)

where ξ is the length of the entangling region, a is a ultraviolet (UV) cutoff and c
is the central charge of the CFT.

In this work we want to calculate the EE in HICs in four dimensional N=4 SYM
theory, described above in section 2.3. This provides a further quantity to study
the dynamics of the system (i.e. SYM plasma), besides the EMT and the two-
point function. EE can be used to distinguish different regimes in its evolution.

Calculating the EE in interacting field theories with field theoretical methods is a
very hard task, especially in dimensions greater than two. Using the methods of
AdS/CFT correspondence, an area law to calculate the EE in d-dimensional static
backgrounds was proposed by Ryu and Takayanagi [22]

SA =
Area of γA

4G
(d+1)
N

, (2.8)

whereG
(d+1)
N is Newton’s constant in (d+1) dimensions and γA denotes the minimal

surface in AdS spacetime, which shares its boundary with the subsystem A of the
field theory located on the AdS boundary (Fig. 6). This formula was generalized
by Hubeny et al. [23] to time dependent backgrounds by generalizing the minimal
surface to an extremal one. Looking at the two dimensional result, one can see
that the results match and the central charge of the CFT is related to the AdS
spacetime via

c =
3R

2G
(3)
N

, (2.9)

where R is the AdS radius. Comparison of the results in higher dimensions, ob-
tained from free (instead of strongly coupled) CFT, also suggests that the holo-
graphic area formula (2.8) can be used.

Further the area law (2.8) looks very similar to the Bekenstein-Hawking entropy
of a black hole, if the horizon is considered the dividing boundary of the two sub-
systems. This suggests that EE may be a candidate for the source of black hole
entropy [24, 25].
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Figure 6: The extremal surface for the EE calculation via the holographic area
law.

2.5. Einstein’s equations

As we want to perform our calculations on the gravity side of the AdS/CFT
correspondence, we need to solve the corresponding Einstein equations. In their
most general form they read

Gµν + Λ gµν = 8π Tµν , (2.10)

with the EMT Tµν of the matter fields and the Einstein tensor Gµν describing the
geometry, defined with a cosmological constant Λ as

Gµν = Rµν −
1

2
gµν R, (2.11)

where Rµν and R are the Ricci tensor and Ricci scalar respectively and gµν is the
spacetime metric.

In this work, we concentrate on spacetimes which are asymptotically AdS. In d-
dimensions AdS space is a maximally symmetric and exact solution to Einstein’s
equations in vacuum with negative cosmological constant and has constant curva-
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ture. In the so called Poincaré patch, the line element is given by

ds2 =
L2

r2
dr2 +

r2

L2
ηµν dxµ dxν , (2.12)

with ηµν being the (d − 1)-dimensional Minkowski metric. For AdSd the Ricci
scalar and the cosmological constant are given by

R =
−d (d− 1)

L2
, (2.13)

Λ =
−(d− 1)(d− 2)

2L2
. (2.14)

In the following we work in five dimensions d = 5 and set the AdS radius to L = 1.
In vacuum (Tµν = 0) Einstein’s equations read

RMN −
1

2
gMN R + Λ gMN = 0, (2.15)

RMN + 4 gMN = 0, (2.16)

which we will use for our calculations.
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3. Solving Einstein’s equations numerically

Solving Einstein’s equations in general leads to a set of coupled non-linear par-
tial differential equations, which is a highly involved task. In the rare examples
where analytic solutions are available, simplifying assumptions such as spatial ho-
mogeneity and/or isotropy are imposed. Investigating systems with less (or no)
symmetries usually requires the help of numerical methods. Particularly systems
without time-translation invariance, which are relevant for this work, need to be
solved numerically.

Since the start in the 1960s [26], numerical relativity made a huge progress. In the
1970s the first simulations of colliding black holes were successfully performed [27].
Since then the development of computers and the improvement of algorithms al-
lowed to tackle more involved problems. Nowadays it is possible to simulate (full)
four dimensional systems of binary black holes with strong and dynamical gravita-
tional fields [28]. Of special interest in this field is the calculation of templates for
gravitational wave forms which are important to large detection experiments such
as LIGO or VIRGO amongst others. The first direct measurements of gravitational
waves [29] show very good agreement with the results of numerical simulations.

In contrast to astrophysical applications where Einstein’s equations need to be
solved on four dimensional Minkowski background, in a holographic setup the
equations must be solved on five dimensional AdS spacetime. Although in princi-
ple the same numerical techniques may be applicable, for this case there exists a
preferable formulation as described in the next section.

3.1. Approaches

Considering dynamical spacetimes, the problem can be divided into the search of
initial conditions on a hypersurface and the evolution to neighboring hypersur-
faces. Even finding initial conditions can be a complicated task, as they must
satisfy constraint equations which are part of Einstein’s equations. This can be
implemented as an iterative procedure.

The most common approach is called ADM formalism, introduced by Arnowitt,
Deser and Misner in the late 1950s [30]. They used a “3+1 decomposition” where
spacetime is split into spacelike hypersurfaces and the evolution is performed in
the time direction. This corresponds to a Hamiltonian formulation of general
relativity.

15



A different approach is the “characteristic formulation”, where lightlike slices are
used for the foliation of spacetime instead of spacelike slices. Opposed to ’3+1
formalisms’ which are restricted to a bounded domain, the characteristic formula-
tion was tailored to study radiation at null infinity. This approach turns out to be
more convenient in AdS/CFT calculations, since effects at the boundary play an
important role.

The biggest advantage of the characteristic formulation is that Einstein’s equations
form a nested set of ordinary differential equation (ODE) on the characteristics.
The computational implementation of an evolution scheme depends on the version
of the formalism and the initial value problem, but most of them have additional
advantages in common [31]. For example there are no constraints on the initial
conditions and therefore no iterative constraint solvers are needed. Further the
characteristics extend to null infinity, so the behavior at the boundary can be
described without extrapolations.

3.2. Homogenous isotropization

To demonstrate the procedure of solving Einstein’s equations in the characteristic
formulation, we first choose a simple setup, a homogeneous but initially anisotropic
AdS5-black hole spacetime [32–35]. On the field theory side this corresponds to
a homogeneous but initially anisotropic N = 4 SYM plasma. The equilibrium
temperature of this plasma is given by the Hawking temperature of the final black
hole on the gravity side. For solving Einstein’s equations in vacuum (2.16) we
make an ansatz for the metric in Eddington-Finkelstein coordinates, where the
anisotropy is specified via the function B

ds2 = −A dv2 + 2 dr dv + Σ2 e−2B dy2 + Σ2 eB (dx2
1 + dx2

2), (3.1)

where v is the advanced time, r is the holographic coordinate, y is the longitudinal
spatial direction and x1, x2 are the transversal spatial directions. The functions
A, B and Σ are functions of the holographic coordinate r and advanced time v
only. In this setting it is easier to see the main advantage of the characteristic
formulation. In the case of shock waves the procedure is the same and Einstein’s
equations simplify to ODEs as well, but there are more terms.

Defining the derivatives along ingoing and outgoing radial null geodesics (i.e. along
the characteristics)

h′ = ∂rh, (3.2)
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ḣ = ∂vh+
1

2
A∂rh, (3.3)

using the metric ansatz (3.1) and inserting it into (2.16), Einstein’s equations in
vacuum simplify to a nested set of ODEs

0 = Σ′′ +
1

2
B′2 Σ, (3.4)

0 = Σ (Σ̇)′ + 2 Σ′ Σ̇− 2 Σ2, (3.5)

0 = Σ (Ḃ)′ +
3

2
(Σ′ Ḃ +B′ Σ̇), (3.6)

0 = A′′ + 3B′ Ḃ − 12
Σ′ Σ̇

Σ2
+ 4, (3.7)

0 = Σ̈ +
1

2
(Ḃ2 Σ− A′ Σ̇). (3.8)

These equations can be solved using an algorithm outlined in [32, 34, 36]. Given B
on the initial v-slice, equation (3.4) allows us to calculate Σ. Knowing Σ, equation
(3.5) is used to find Σ̇. Then (3.6) is used to get Ḃ and (3.7) yields A. Now Ḃ and
A can be used to calculate ∂vB via (3.3). With this quantity the initial condition
(B(r, v + ∆v)) on the next characteristic can be found using a time integration
method like the Runge-Kutta algorithm. The last equation (3.8) is redundant and
can be used to check how well Einstein’s equations are fulfilled.

3.2.1. Asymptotic behavior

As we are interested in a spacetime which behaves like AdS space asymptotically
(i.e. as r →∞), we make an expansion of the metric functions near the boundary
(r =∞)

A(r, v) = r2

(
4∑
i=0

ai(v) r−i +O(r−5)

)
, (3.9)

B(r, v) =
4∑
i=0

bi(v) r−i +O(r−5), (3.10)

Σ(r, v) = r

(
4∑
i=0

σi(v) r−i +O(r−5)

)
. (3.11)

The requirement for the spacetime to be asymptotically AdS with conformally flat
boundary fixes the first coefficients to a0 = 1, σ0 = 1 and b0 = 0. We choose the
boundary metric as follows

ds2|boundary = r2
(
−dt2 + dy2 + dx2

1 + dx2
2

)
, (3.12)

17



where t denotes the Minkowski time at the boundary.

Inserting the expansion of the metric functions, Einstein’s equations can be solved
order by order in r. At zeroth order the equations are trivially satisfied. At first
order σ1 remains undetermined and we choose to use the gauge freedom and set

σ1(v) = ξ(v), (3.13)

where ξ is some arbitrary but fixed function of v. In order to simplify the expres-
sions the argument v is dropped from now on. Up to fourth order all coefficients
can be expressed through ξ, but a4 and b4 remain undetermined . If higher orders
were kept in the expansion, we would see that the fifth order equation constrains a4

to be independent of v. This constraint coincides with the conservation of energy
and momentum. Therefore the asymptotic expansions are

A = r2 + 2 r ξ − 2 ∂vξ + ξ2 +
a4

r2
− 2 a4 ξ

r3
+O(r−4), (3.14)

B =
b4

r4
− 4 b4 ξ

r5
+
∂vb4

r5
+O(r−6), (3.15)

Σ = r + ξ − b2
4

7 r7
+O(r−8). (3.16)

A coordinate change r → z = 1
r

makes the numerical calculation easier, since it
relocates the boundary to the finite value z = 0.

3.2.2. Redefinition of the metric functions

As one can see in the expressions (3.14) - (3.16) for the metric functions, there
are terms diverging when z → 0 (r → ∞). This is problematic in the numerical
calculation. To avoid this, we make a redefinition of the functions

A =
1

z2
+

2 ξ

z
+ ξ2 − 2 ∂vξ + z2Areg, (3.17)

B = z4Breg, (3.18)

Σ =
1

z
+ ξ + z4 Σreg, (3.19)

Ḃ = z3 Ḃreg, (3.20)

Σ̇ =
1

2 z2
+
ξ

z
+
ξ2

2
+ z2 Σ̇reg. (3.21)

Inserting this into Einstein’s equations, they can be solved for the regularized
functions Areg, Breg, Σreg, Ḃreg and Σ̇reg, which do not diverge at the boundary.
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3.2.3. Holographic relations

The coefficients a4 and b4(v) in the asymptotic expansion determine the expecta-
tion value of the EMT in the dual field theory [37]

〈T µν〉 =
N2
c

2π2
diag [E ,Py,Px1 ,Px2 ] , (3.22)

with the energy density E and the longitudinal and transversal pressure densities
Py and Pxi respectively. From the relations

E = −3

4
a4, Py = −1

4
a4 − 2 b4, Px1 = Px2 = −1

4
a4 + b4, (3.23)

we can see that the time independence of a4 translates into a constant energy
density, while the pressure components are time dependent due to b4. With our
choice of the redefinition of the metric functions, these values can conveniently be
extracted from Areg and Breg, which we compute

b4(v) = Breg(z = 0, v), a4 = Areg(z = 0, v). (3.24)

The fact that the EMT is traceless arises from the conformally flat boundary
metric (3.12). It is also possible to introduce perturbations by imposing time
dependent deformations of the boundary geometry. This leads to a conformal
anomaly [38] and results in more complicated relations for the components of the
field theory EMT [32].

3.2.4. Numerical results

For convenience, in our simulation we set ξ = 0 but it can also be used to fix
the position of the apparent horizon to a specific value as done in [32]. This can
be useful, if we want to make sure that the apparent horizon is contained in a
restricted computational domain as we do in the shock wave setup.

Using spectral methods (see e.g. [39]), Einstein’s equations can be solved on one
characteristic. The radial domain of calculation is chosen to be z ∈ [0, 1.6]. For
evolution in time a Runge-Kutta [40] algorithm is used. With the initial profile

Bini(0, z) = β z e−
(z−z0)

2

ω2 , (3.25)
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a) b)

Figure 7: a) Anisotropy function with horizons and geodesics; b) Energy density,
transversal and longitudinal pressure.

where β = 6.6, z0 = 0.25 and ω = 0.15 we find the results, shown in Fig. 7. The
Gaussian profile with this shape was chosen, because it suits the purpose to depict
the thermalization of the system very well.

The radial location rH of the apparent horizon is calculated via the condition
Σ̇|rH = 0 [34]. Opposed to the global concept of an event horizon, the appar-
ent horizon can be determined locally [41, 42]. We take the congruence of null
geodesics

drG
dv

=
1

2
A(r, v), (3.26)

and pick the one geodesic, which is neither falling into the bulk nor going towards
the boundary as an estimate for the event horizon.

In Fig. 7a) one can see the isotropization of the the system via the function B
and the apparent horizon, as well as the event horizon and a null congruence of
geodesics. Further one can use the relations (3.23) to calculate the components of
the EMT on the CFT side. Energy density, longitudinal and transversal pressure
are shown in Fig. 7b). The energy density is constant, whereas the pressure ther-
malizes after a few oscillations.

The numerical codes are available at www.christianecker.com.
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3.3. Shock wave setup

Now that the procedure has been explained in the example above, we can turn our
attention to a geometry allowing to describe shock waves. It is worth to mention,
that we still use Einstein’s equations in vacuum (2.16) (i.e. there are no matter
fields involved), as we are dealing with gravitational waves. The metric ansatz to
solve them is generalized to [34, 35]

ds2 = −A dv2 + 2 drdv + 2F dvdy + Σ2 e−2Bdy2 + Σ2 eBdx2
1 + Σ2 eBdx2

2, (3.27)

where r is the radial coordinate and A, B, F and Σ are functions of r, the advanced
time v and the spatial coordinate y. Now the spacetime is homogeneous and
isotropic in two spatial directions (x1, x2) and inhomogeneous in y-direction, in
which the shock waves propagate. On the field theory side, this is the direction of
the ’beam line’.
Inserting the ansatz into (2.16) Einstein’s equations read

Σ′′ = −1

2
Σ(B′)2, (3.28)

Σ2 F ′′ = Σ (6Σ̃B′ + 4 Σ̃′ + 3F ′Σ′) + Σ2 (3 B̃ B′ + 2 B̃′)− 4 Σ̃ Σ′, (3.29)

12 Σ3 Σ̇′ = e2B (Σ2 (4 B̃ F ′ − 7 B̃2 − 4 ˜̃B + 2 F̃ ′ + (F ′)2)

+ 2 Σ (Σ̃ (F ′ − 8 B̃)− 4 ˜̃Σ) + 4 Σ̃2) + 24 Σ2 (Σ2 − Σ̇ Σ′), (3.30)

6 Σ4 Ḃ′ = e2B (Σ2 (−B̃ F ′ + B̃2 + ˜̃B − 2 F̃ ′ − (F ′)2)

+ Σ (Σ̃ (B̃ + 4F ′) + 2 ˜̃Σ)− 4 Σ̃2)− 9 Σ3 (Σ̇B′ + Ḃ Σ′), (3.31)

2 Σ4A′′ = e2B (Σ2 (7 B̃2 + 4 ˜̃B − (F ′)2) + 8 Σ (2 B̃ Σ̃ + ˜̃Σ)− 4 Σ̃2)

− 2 Σ4 (3 Ḃ B′ + 4) + 24 Σ̇ Σ2 Σ′, (3.32)

6 Σ2 Ḟ ′ = 3 (Σ2 (−(2B′ (Ã+ 2 Ḟ ) + 2 Ã′ + 6 Ḃ B̃ + 4 ˜̇B + A′ F ′))

+ 2 Σ(Σ′ (Ã+ 2 Ḟ )− 6 Ḃ Σ̃− 4 ˜̇Σ− 3 Σ̇F ′) + 8 Σ̇ Σ̃), (3.33)

6 Σ2 Σ̈ = e2B (Σ (2 B̃ (Ã+ 2 Ḟ ) + ˜̃A+ 2 ˜̇F ) + Σ̃ (Ã+ 2 Ḟ ))

+ 3 Σ2 (Σ̇A′ − Ḃ2 Σ), (3.34)

where prime denotes radial derivatives and dot (tilde) denotes modified time (lon-
gitudinal) derivatives, defined as

h′ = ∂rh, ḣ = ∂vh−
1

2
A∂rh, h̃ = ∂yh+ F ∂rh. (3.35)

The equations get more complicated because of the additional function F in the
metric and the additional dependence on the coordinate y, but in principle the
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scheme remains the same. As in the homogeneous isotropization example we can
solve the equations for constant v and then evolve to the next characteristic.

The near boundary expansion works similar to the homogeneous isotropization

A = r2 + 2 ξ r + ξ2 − 2 ∂vξ +
a4

r2
+
∂va4 − 4 ξ a4

2 r3
+O(r−4), (3.36)

B =
b4

r4
+

15 ∂vb4 + 2 ∂rf4 − 60 ξb4

15 r5
+O(r−6), (3.37)

F = ∂rξ +
f4

r2
+

4 ∂vf4 + ∂ra4 − 10 ξ f4

5 r3
+O(r−4), (3.38)

Σ = r + ξ − 4 ∂rf4 + 3 ∂ra4

60 r4
+O(r−5), (3.39)

where the coefficients a4, b4 and f4 depend on the coordinates v and y. The
redefined metric functions are

A =
1

z2
+

2 ξ

z
+ ξ2 − 2 ∂vξ + z2Areg, (3.40)

B = z4Breg, (3.41)

F = ∂yξ + z2 Freg, (3.42)

Σ =
1

z
+ ξ + z4 Σreg, (3.43)

Ḃ = z3 Ḃreg, (3.44)

Σ̇ =
1

2 z2
+
ξ

z
+
ξ2

2
+ z2 Σ̇reg, (3.45)

where we have replaced r by z = 1
r

once again. Inserting these definitions into
the nested set of ODEs (i.e. Einstein’s equations), obtained from the new metric,
allows to find the regularized functions numerically.

Again, we can use the holographic relations described in [37] and find

〈T µν〉 =
N2
c

2π2


E S 0 0
S Py 0 0
0 0 Px1 0
0 0 0 Px2

 , (3.46)

with the components determined through the non-zero expansion coefficients

E = −3

4
a4, Py = −1

4
a4 − 2 b4,

Px1 = Px2 = −1

4
a4 + b4, S = −f4. (3.47)
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In addition to the energy and pressure densities (E , Py and Pxi), there are off-
diagonal elements in (3.46) representing the energy flow S.

As the numerics are more involved, we used the gauge freedom ξ(v, y) to fix the
apparent horizon to zah = 1 and reduced the range of the holographic coordinate
to z ∈ [0, 1.08] [35]. In this geometry, the condition used to fix the apparent hori-
zon gets more complicated too [34].

As initial conditions we choose a superposition of two shock waves with finite
energy density and thickness moving towards each other. To formulate these, it
is convenient to use Fefferman-Graham coordinates (r̃, t̃, ỹ, x̃1, x̃2), as in the holo-
graphic renormalization. An analytic solution for a single planar shock moving in
∓y-direction is given by

ds2 = r̃2
(
−dt̃2 + dỹ2 + dx̃1

2 + dx̃2
2

)
+

1

r̃2

(
dr̃2 + h(t̃± ỹ) (dt̃± dỹ)2

)
, (3.48)

with h(t̃± ỹ) an arbitrary function, for which we choose a Gaussian profile of the
following form

h(v ± y) = µ3 (2 π ω2)−
1
2 e−

1
2

(v±y)2

ω2 , (3.49)

with width ω and amplitude µ3. As long as the initial shocks are separated far
enough, the superposition sufficiently fulfills Einstein’s equations. For the calcula-
tion the initial conditions will be transformed to Eddington-Finkelstein coordinates
numerically [34].

Using spectral methods and a Runge-Kutta algorithm, we solve the equations for
two different initial conditions, the wide and narrow shocks with the parameters
of (3.49) being

wide : µ3
w =

4

3
ωw, ωw = 0.5, (3.50)

narrow : µ3
n =

4

3
ωn, ωn = 0.25. (3.51)

The centers of both types of shocks are initially located at ỹ0 = ±1 and t̃0 = 0.
A motivation for using two different types of shocks, is to model HICs at different
energies and therefore different Lorentz contractions.

Fig. 8 shows the energy density for the two different initial conditions. In the
regions outside the propagating shocks the energy density is zero as well as in
the region between them before the collision. As the shocks collide at µt ≈ 1.4,
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a) narrow shocks b) wide shocks

Figure 8: Energy density.

the energy density piles up to the central peak in the plot. After the collision,
the energy density is non-zero in the forward lightcone. The difference between
the two cases is the local minimum occurring for narrow shocks. This has been
described as “transparency”, because the energy production after the collision is
a bit delayed, opposed to the “full stopping” with the hydrodynamic explosion in
case of wide shocks [18].

In Fig. 9 we can see how the shape of the apparent horizon evolves in time.
To relate this to the shock waves, the energy density is shown as a contour plot
below. In the left picture the dip of the horizon is sharper than in the right one,
similar to the narrow shocks compared with the wide shocks. In spite of this
shape, the horizon in the geometry of wide shocks gets closer to the boundary as
the energy density is bigger.

In this setup we can calculate the time evolution of longitudinal and transversal
pressure and energy flow, as described in (3.47). The results for the transversal
pressure are shown in Fig. 10. One can see that there is no transverse pressure
before the collision and it is larger for the wide shocks.

Opposed to this, Fig. 11 shows that the longitudinal pressure for wide shocks is
smaller than for narrow shocks. Further the longitudinal pressure becomes nega-
tive right after the collision. This matches the “transparency“, where the outgoing
shocks drag the created plasma with them and loosely speaking it is stretched.
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a) narrow shocks b) wide shocks

Figure 9: Event horizon over the energy density.

a) narrow shocks b) wide shocks

Figure 10: Transversal pressure.
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a) narrow shocks b) wide shocks

Figure 11: Longitudinal pressure.

Finally Fig. 12 shows the energy flow in the inhomogeneous y-direction. In the
other homogeneous directions there is no energy flow. Similar to the other quan-
tities, the shape is much sharper for the narrow shocks, but the values are closer.
The negative values are simply energy flowing in the negative y-direction. In this
plot one can see that there is no energy flow at the point of the collision, because
the amplitudes of the shocks cancel each other. Lastly one can see that the angle
of the outgoing energy flow is smaller for the wide shocks, i.e. the particles loose
velocity in the collision. This feature appears in all other plots too, but is better
visible in the last one.

These calculations were done, using a Mathematica notebook provided by Wilke
van der Schee (https://sites.google.com/site/wilkevanderschee/). The numerical
values of the functions A, B, F and Σ were used as input for the remainder of this
work (i.e. the calculation of two-point functions and the EE).
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a) narrow shocks b) wide shocks

Figure 12: Energy flow.
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4. Holographic calculation of two-point functions
and entanglement entropy

In the previous chapter we calculated the EMT of the dual field theory at the
boundary of AdS5. This observable, also called one-point function, is a local quan-
tity that probes the thermalization behavior of the system located at the energy
scale set by z. We evaluate Tµν at z = 0, which corresponds to the UV regime in
the field theory.

To describe the behavior on lower energy scales we need to look at non-local
observables, like two-point functions. The calculation of these quantities on the
gravity side of the correspondence requires data from different scales z in the bulk.
This can give more insight into the dynamics of the system. We compute two-point
functions of operators with large conformal weight which correspond to composite
operators of many primary fields. Such operators cannot be measured in experi-
ments yet. Nevertheless holography is currently the only framework which allows
to compute two-point functions at strong coupling in dimensions higher than two.

To understand the time evolution at the highly anisotropic stages of HICs bet-
ter, we want to calculate another non-local quantity. The EE can be used to study
the dynamics of such systems and may turn out to be a measure for thermalization.

It turns out that the calculation of the two-point function and the EE reduces
to solving the geodesic equations

ẍµ + Γµαβ ẋ
α ẋβ = 0, (4.1)

where the dot denotes the derivative with respect to an affine parameter. For
the actual numerical implementation it is more convenient to use a non-affine
parameter σ. With this parametrization (4.1) reads

ẍµ + Γµαβ ẋ
α ẋβ = −J ẋµ, (4.2)

where the dot denotes the derivative with respect to σ. For the actual numerical
calculation we use an iterative procedure, which needs an ansatz provided in the
following sections.
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4.1. The two-point function

The equal time two-point function of an operator O with large conformal weight
∆ is calculated via the path integral [43, 44]

〈O(t, ~x)O(t, ~x′)〉 =

∫
DP e−i∆L(P) ≈

∑
geodesics

e−∆Lg ≈ e−∆L, (4.3)

where the integral is performed over all paths connecting the boundary points (t, ~x)
and (t, ~x′) through the bulk. The geodesic approximation neglects perturbative
corrections and leads to the sum over all geodesics. Due to the large conformal
weight at leading order only the length L of the shortest geodesic contributes, which
explains the second approximation. However, the length of all geodesics diverges,
as they are attached to the AdS boundary. Therefore we have to regularize the
length of the geodesics. We do this by introducing a cutoff in radial direction, such
that the geodesics do not end at the infinite boundary, but at some finite value
close to it

〈O(t, ~x)O(t, ~x′)〉 ∼ e−∆Lreg . (4.4)

We restrict our attention to geodesics which endpoints are separated in y-direction,
although the calculation can be performed in the other directions as well. This
amounts to solving the geodesic equation for the subspace with line element

ds2 = −A dv2 − 2

z2
dz dv + 2F dy dv + Σ2 e−2B dy2. (4.5)

To calculate the geodesics, the geometry at every point along the geodesic is
needed. As described in the previous chapter, Einstein’s equations are solved
in a certain coordinate range. This computational domain restricts the number of
feasible geodesics to a subset which lies completely in this region.

4.1.1. Geodesic ansatz in pure AdS

The spacetime we are interested in is asymptotically (z → 0) AdS. Therefore
geodesics in pure AdS spacetime provide a good initial guess for the relaxation
method described later on. Following [45] we calculate the ansatz, using the line
element

ds2 =
1

z2
(−dv2 − 2 dz dv + dy2). (4.6)
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Parametrizing the geodesics with the affine parameter τ we find

ds =
1

z

√
−v̇2 − 2 ż v̇ + ẏ2 dτ, (4.7)

where the dot denotes the derivative with respect to the affine parameter. Inserting
this into the geodesic action

S =

∫
L dτ =

∫
ds

dτ
dτ =

∫
1

z

√
−v̇2 − 2 ż v̇ + ẏ2 dτ, (4.8)

leads to the geodesic equations of motion, which allow first integrals

∂L
∂v
− ∂

∂t

∂L
∂v̇

= 0 ⇒ −2 v̇ − 2 ż

2 z
√
−v̇2 − 2 v̇ ż + ẏ2

= const, (4.9)

∂L
∂y
− ∂

∂t

∂L
∂ẏ

= 0 ⇒ 2 ẏ

2 z
√
−v̇2 − 2 v̇ ż + ẏ2

= const. (4.10)

Using that for spacelike geodesics gµν x
µxν = 1 one obtains

1

z2
(−v̇2 − 2 ż v̇ + ẏ2) = 1, (4.11)

z =
√
−v̇2 − 2 ż v̇ + ẏ2, (4.12)

which simplifies the equations of motion (4.9) and (4.10) to

v̇ = E z2 − ż, (4.13)

ẏ = Lz2, (4.14)

ż = ±z
√

1− (L2 − E2) z2, (4.15)

where E and L are the constants of motion. To find the geodesic we use z as
parameter and integrate equations (4.13)-(4.15) 1 (for symmetric advanced time
we set E = 0)

z(z) = z, (4.16)

v(z) = v0 − z, (4.17)

y(z) = ±
√
L−2 − z2. (4.18)

The second constant of motion L is related to the separation of the geodesic at
the boundary via

l = (y+ − y−)z=0 =
2

L
. (4.19)

1For the equation (4.14) one may write ẏ = ± Lżz√
1−L2z2

.
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For the numerical algorithm it is more convenient to use a non-affine parametrization,
which covers both branches of the geodesic at the same time

z(σ) =
l

2
(1− σ2), (4.20)

y(σ) =
l

2
(σ
√

2− σ2), (4.21)

v(σ) = v0 − z(σ), (4.22)

where σ ∈ [−1 + ε , 1− ε ]. We introduced ε to realize a UV cutoff at zcut given by

ε = 1−
√

1− 2 zcut
l

. (4.23)

To obtain the Jacobian J , needed in the non-affine geodesic equation,

J(σ) =
d2τ

dσ2

/
dτ

dσ
, (4.24)

we integrate equation (4.15)

τ(z) =

∫
dz

z
√

1− 4
l2
z2

= ∓artanh

(√
1− 4

l2
z2

)
, (4.25)

and insert the new parametrization to express the affine parameter τ through the
non-affine parameter σ

τ(σ) = ∓artanh
(
σ
√

2− σ2
)
. (4.26)

Then the Jacobian in (4.2) is given by

J(σ) =
5σ − 3σ3

2− 3σ2 + σ4
. (4.27)

4.2. The holographic entanglement entropy

The holographic EE [23] for a region A on the AdS-boundary can be calculated
by extremizing the surface functional

A =

∫
d3σ

√
det

(
∂xµ

∂σa
∂xν

∂σb
gµν

)
, (4.28)
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Figure 13: Stripe region with minimal surface γA.

which has the same boundary as A. The EE in the dual field theory is conjectured
to be [22, 23]

SEE =
A

4GN

. (4.29)

As our spacetime is homogenous only in two spatial dimensions and inhomoge-
neous in the third one, we restrict our attention to areas, which are stripes with
infinite extent in the two x-directions and finite extent in the y-direction (Fig. 13).
This simplifies the problem to calculating geodesics in an auxiliary spacetime. The
geodesics (and the new ansatz) have to lie inside the calculational domain, as dis-
cussed before.

4.2.1. Auxiliary spacetime

We can write the five dimensional line element by introducing auxiliary fields
φi(x

α) [45]

ds2 = hαβ dxα dxβ + φ2
1 dx2

1 + φ2
2 dx2

2, (4.30)
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where hαβ is the reduced metric for the coordinates (z, v, y). Using (4.30) and
inserting the parametrization σ the surface functional is given by

A =

∫
dx1

∫
dx2

∫
dσ

√
φ2

1 φ
2
2 hαβ

∂xα

∂σ

∂xβ

∂σ
. (4.31)

As the metric does not depend on the coordinates x1 and x2, we can perform the
first two integrals yielding a constant volume factor. For the considered stripe re-
gion this factor is infinite due to the integral over the infinitely extended transverse
directions. Dividing the surface area by that constant factor yields a EE density
per Killing volume (i.e. the volume in the homogenous directions).

Die to equation (4.31) our problem is reduced to calculating geodesics in the con-
formal three dimensional spacetime

ds̃2 = h̃αβ dxα dxβ = φ2
1 φ

2
2 hαβ dxα dxβ. (4.32)

In the present case the auxiliary fields are given by φ2
1 = φ2

2 = Σ2 eB, which leads
to the auxiliary spacetime

ds̃2 = h̃αβ dxαdxβ = Σ4 e2B(−A dv2 − 2

z2
dz dv + 2F dy dv + Σ2 e−2Bdy2). (4.33)

4.2.2. Geodesic ansatz in the auxiliary spacetime

Similar to the procedure for the two-point function, we look at the metric at
asymptotic distances, which looks like

ds2 =
1

z6
(−dv2 − 2 dz dv + dy2). (4.34)

Starting with an affine parametrization, the action is given by

S =

∫
L dτ =

∫
ds

dτ
dτ =

∫
1

z3

√
−v̇2 − 2 ż v̇ + ẏ2 dτ, (4.35)

and the equations of motion are

∂L
∂v
− ∂

∂t

∂L
∂v̇

= 0 ⇒ −2 v̇ − 2 ż

2 z3
√
−v̇2 − 2 v̇ ż + ẏ2

= const, (4.36)

∂L
∂y
− ∂

∂t

∂L
∂ẏ

= 0 ⇒ 2 ẏ

2 z3
√
−v̇2 − 2 v̇ ż + ẏ2

= const. (4.37)
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With the spacelike condition gµν x
µxν = 1 and E = 0 we obtain the equations of

motion

v̇ = −ż, (4.38)

ẏ = Lz6, (4.39)

ż = ±z3
√

1− L2 z6. (4.40)

To solve equations (4.38)-(4.40) we use the integral identity∫
dz zn√

1− L2 z6
=

z1+x

1 + n
2F1

[
1

2
,
1 + n

6
, 1 +

1 + n

6
;L2z6

]
, (4.41)

and find the geodesics

z(z) = z, (4.42)

v(z) = v0 − z, (4.43)

y(z) = ∓ l

2
± Lz4

4
2F1

[
1

2
,
2

3
,
5

3
;L2z6

]
, (4.44)

where l
2

is an integration constant, as the hypergeometric function is 0 at the
boundary. To guarantee that the two branches of the geodesic join smoothly, we
need to adjust the constant L and express it in terms of the boundary separation
l

L =
π

3
2 Γ[5

3
]3

8 l3 Γ[7
6
]3
. (4.45)

Similar as for the two-point function we choose a non-affine parametrization,

z(σ) = Zmax(1− σ2), (4.46)

v(σ) = v0 − z(σ), (4.47)

y(σ) = sgn(σ)

(
− l

2
+
Lz(σ)4

4
2F1

[
1

2
,
2

3
,
5

3
;L2z(σ)6

])
, (4.48)

where the UV-cutoff at zcut is realized by choosing σ ∈ [−1 + ε , 1− ε ] with ε

ε = 1−
√

1− ZUV
Zmax

, (4.49)

and Zmax is the position where the two branches join. Zmax is explicitly given by

Zmax =
2 l Γ[7

6
]3

√
π Γ[5

3
]3
. (4.50)
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To find the Jacobian J we follow the same procedure as above and express τ in
terms of σ

τ(z) = ±
∫

dz

z3
√

1− L2 z6
= ∓ 1

2 z2 2F1

[
1

2
,−1

3
,
2

3
;L2z6

]
, (4.51)

τ(σ) = ∓ 1

2Z2
max(1− σ2)2 2F1

[
1

2
,−1

3
,
2

3
;L2Z6

max(1− σ2)6

]
, (4.52)

yielding the Jacobian in (4.2)

J(σ) =
d2τ

dσ2

/
dτ

dσ
=
−51σ + 145σ3 − 205σ5 + 159σ7 − 65σ9 + 11σ11

(2− σ2)(1− σ2)(3− 3σ2 + σ4)(1− σ2 + σ4)
. (4.53)

4.3. Numerical solution of the geodesic equation

The geodesic equations of motion are a set of coupled ordinary differential equa-
tions (ODE), which we need to solve in order to find a geodesic. Looking at the
boundary conditions, we can specify our problem to be a ’two point boundary value
problem’, as the endpoints of the geodesic must be attached to the AdS boundary
(i.e. at the cutoff). There are two standard methods to solve such a ’two point
boundary value problem’, shooting and relaxation [40]. Both are iterative pro-
cedures. We do not shoot but relax. We choose the relaxation method, because
shooting requires careful fine tuning of the initial conditions to hit the second end
point, whereas the relaxation method just needs a suitable ansatz. Especially in
AdS, where distances grow approaching the boundary, fine tuning is problematic,
as small deviations result in chaotic behavior of the result.

In the next section we will describe the relaxation method briefly (for more details
see [40]), followed by the concrete application to our set of differential equations
in the last part of this chapter.

4.3.1. The relaxation method

The first step is to convert the set of differential equations into finite difference
equations (FDE) on a grid, covering our domain of interest. A simple example
may look like

dy

dx
= g(x, y), (4.54)
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yk − yk−1

xk − xk−1

= g

(
1

2
(xk − xk−1),

1

2
(yk − yk−1)

)
, (4.55)

where k denote the grid points. For a system of N first order ODEs converted
to FDEs on a grid of size M , a solution consists of values for N functions on M
grid points, i.e. of N ×M variables. Using a multidimensional Newton method,
the equations are written in matrix form. The matrix has a special block diago-
nal form, which reduces the resources needed for inverting it to solve the equations.

A set of FDEs may look like

0 = Ej,k = (yj,k − yj,k−1)− (xk − xk−1) gj,k

(
1

2
(xk − xk−1),

1

2
(yj,k − yj,k−1)

)
,

(4.56)

where j = 0, ..., N−1 labels the equation and k = 1, ...,M−1 specifies the position
xk. This are N equations at (M − 1) points for MN variables. The missing N
equations to solve the system are provided by the boundary conditions

0 = Ej,0 = Bj(x0, yj,0), 0 = Ej,M = Cj(xM , yj,M), (4.57)

where Bj contains n1 boundary conditions at the starting point and Cj provides
n2 = N − n1 boundary conditions at the endpoint (while the remaining entries of
B, C and E are zero).

The relaxation method needs an ansatz yj,k for the values of the N variables at
the M points. These values are corrected by small increments ∆yj,k, such that
yj,k + ∆yj,k is an improved solution to the FDEs. The new values are then used as
ansatz to start all over again until some error criterion is fulfilled. The error may
be calculated like

err =
1

NM

∑
j,k

∆yj,k. (4.58)

To find the increments ∆yj,k we use a multidimensional Taylor expansion of the
FDEs to first order

Ej,k(yj,k + ∆yj,k, yj,k−1 + ∆yj,k−1) =

= Ej,k(yj,k, yj,k−1) +
N−1∑
n=0

∂Ej,k
∂yn,k−1

∆yn,k−1 +
N−1∑
n=0

∂Ej,k
∂yn,k

∆yn,k. (4.59)

For a solution, the updated equations Ej,k must be zero, therefore we write

−Ej,k =
N−1∑
n=0

Ŝj,n ∆yn,k−1 +
N−1∑
n=0

S̃j,n ∆yn,k, (4.60)
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where

Ŝj,n =
∂Ej,k
∂yn,k−1

, S̃j,n =
∂Ej,k
∂yn,k

. (4.61)

A similar expansion of the equations at the first boundary leads to

−Ej,0 =
N−1∑
n=0

S̃j,n ∆yn,0, j = n2, n2 + 1, ..., N − 1 , (4.62)

where

S̃j,n =
∂Ej,0
∂yn,0

. (4.63)

At the second boundary we find

−Ej,M =
N−1∑
n=0

Ŝj,n ∆yn,M−1, j = 0, ..., n2 − 1 , (4.64)

with

Ŝj,n =
∂Ej,M
∂yn,M−1

. (4.65)

Combining Ŝj,k and S̃j,k into one matrix

Sj,n = Ŝj,n, for n = 0, ..., N − 1 , (4.66)

Sj,n = S̃j,n, for n = N, ...2N − 1 , (4.67)

we get a N × 2N matrix at every point k. To solve the equations (4.60) above for
∆yj,k, we need to combine all these matrices (like in Fig. 14) and solve the linear
equation

S.v = b, (4.68)

where v is the solution vector related to the corrections ∆yj,k and b contains the
FDEs Ej,k. The matrix S has now a block diagonal form which can be dealt with
efficiently, using a form of the Gaussian elimination for sparse matrices [40], ex-
ploiting the form of S. This makes it possible to tackle problems with large grid
sizes and many equations.

In the following section we apply this method to the geodesic equations in the
spacetime, obtained in chapter 3.
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X X X . . . . . . . . . . . . . . .
X X X . . . . . . . . . . . . . . .
I I I X X X . . . . . . . . . . . .
I I I X X X . . . . . . . . . . . .
I I I X X X . . . . . . . . . . . .
. . . I I I X X X . . . . . . . . .
. . . I I I X X X . . . . . . . . .
. . . I I I X X X . . . . . . . . .
. . . . . . I I I X X X . . . . . .
. . . . . . I I I X X X . . . . . .
. . . . . . I I I X X X . . . . . .
. . . . . . . . . I I I X X X . . .
. . . . . . . . . I I I X X X . . .
. . . . . . . . . I I I X X X . . .
. . . . . . . . . . . . I I I X X X
. . . . . . . . . . . . I I I X X X
. . . . . . . . . . . . I I I X X X
. . . . . . . . . . . . . . . I I I


Figure 14: In case of three equations on 6 grid points with two initial conditions at

the first grid point and one on the last grid point, the S-matrix looks
like this. For better visualization, the I stand for Ŝ, the X stand for S̃
and the dots represent zeros.
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4.3.2. Implementation for the geodesic equation

For applying the relaxation method, it is convenient to use the geodesic equations
with non-affine parametrization, as mentioned in sections 4.1 and 4.2

ẍµ + Γµαβ ẋ
α ẋβ = −J ẋµ, (4.69)

where J is the Jacobian (equation (4.27) for the two-point function and (4.53) for
the EE) and dot denotes the derivative with respect to the non-affine parameter.
As these are three second order differential equations (in our reduced spacetime),
we need to rewrite them into six first order ODEs. This can be done, introducing
the derivatives of the coordinates (z, v, y) as separate variables (pz, pv, py)

pv = v̇, (4.70)

ṗv + Γvvv p
2
v + 2 Γvvy pv py + Γvyy p

2
y = −J pv, (4.71)

pz = ż, (4.72)

ṗz + Γzvvp
2
v + 2 Γzvzpv pz + 2 Γzvypvpy + 2 Γzzypzpy + Γzzzp

2
z + Γzyyp

2
y = −J pz, (4.73)

py = ẏ, (4.74)

ṗy + Γyvv p
2
v + Γyvz pv pz + 2 Γyvy pv py + 2 Γyzy pz py + Γyyy p

2
y = −J py. (4.75)

To translate this into FDEs, we use a scheme described in (4.55). With the ansatz
from sections 4.1 or 4.2, the algorithm can be started (we set the value for the
cutoff to zcut = 0.05). According to the previous section we can calculate the
matrix S. It turns out that many entries of the blocks are zero. This makes the
inversion even more efficient and the corrections are calculated.

An important subtlety is that the correction is only valid for small deviations
from the solution (i.e. if the Taylor expansion is valid). To take this into account,
we only apply the full correction if the error (4.58) is small enough (we chose 0.05
for this distinction). Otherwise only 10% of the correction are added to the previ-
ous solution.

This whole procedure needs to be repeated until the relative error is sufficiently
small (we chose err < 10−6 as criterion). If the solution does not converge (e.g. if
the initial separation at the boundary and/or the time coordinate are badly con-
ditioned), a computational error will occur eventually. To avoid this, the starting
point and the initial separation of the boundary point have to satisfy

v0 ≥
l

2
, (4.76)
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in the case of calculating the two-point function. For the EE this condition is
modified using the corresponding ansatz. Further the separation l must be small
enough, such that the ansatz does not extend the z-range of the calculational do-
main defined in chapter 3.3.

Once the relaxation was successful, we calculate the length of the geodesic via
integration of the line element along the geodesic

Lgeo =

∫ σmax

σmin

dσ
√
ẋµ(σ) ẋµ(σ) gµν(x), (4.77)

using Mathematicas functions for interpolation and integration.

The length is directly converted to the two-point function (4.4) or the EE density

SEE
V ol

=
L

4GN

, (4.78)

where V ol is the infinite but constant Killing volume of the two remaining spatial
coordinates x1 and x2.
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5. Results

Using the methods described in chapter 3, we generate numerical data (i.e. the
spacetime metric) prescribing the evolution of spacetime for two different initial
conditions, narrow and wide shock waves. These sets of data (i.e. the required
Christoffel symbols calculated from it) are used to solve the geodesic equations
with the relaxation method described in chapter 4. As already mentioned, we
need to solve it in the reduced, three dimensional spacetime to find the two-point
function and in the auxiliary spacetime to calculate the EE.

With this setup it is possible to make different investigations. For example, the
width of boundary area of interest can be varied or its spatial position can be
changed. As mentioned in chapter 4 we need to take care of the calculational do-
main. If we choose badly conditioned parameters at the boundary, the geodesics
might leave the calculational domain at some point. Solving this problem for all
cases treated below involves some trial and error. Especially the early times t are
affected as the geodesics bend back in advanced time as well as too large sepa-
rations l0, for which the geometry (further) behind the horizon would be needed
(for the EE the restrictions are stronger than for the two-point function). For late
times the calculations are done up to t = 5, as the dynamics caused by the collision
have settled in most cases.

For all evolution scenarios it is useful to take the solution of the previous step
as ansatz for the next one, instead of a pure AdS geodesic like initially done.

Boundary coordinates and quantities of the field theory are plotted dimension-
less in units of the energy µ, while the holographic coordinate is measured in units
of the AdS-radius.

5.1. Time evolution of two-point function and entanglement
entropy

In this work we focused on the time evolution of the system first. The whole setup
is shown in Fig. 15 and Fig. 16 for the two-point function and the EE respectively.
The dark surface represents the radial position of the apparent horizon and the
energy density of the boundary field theory is displayed as a contour plot located
at the cutoff, as already shown in chapter 3.3. In addition, the orange lines show
the geodesics calculated, while the green dots depict the initial ansatz. Avoiding
the horizon, the tips of geodesics bend towards the boundary and mimic its shape.
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a) narrow shocks b) wide shocks

Figure 15: Geodesics (orange curves) and ansatz (green dots) in the three dimen-
sional subspace for calculating the two-point function, the apparent
horizon (dark surface) and the energy density (contour plot).

a) narrow shocks b) wide shocks

Figure 16: Geodesics (orange curves) and ansatz (green dots) in the auxiliary
spacetime for calculating the EE, the apparent horizon (dark surface)
and the energy density (contour plot).
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A closer look shows that the geodesics calculated in the three dimensional sub-
space for the two-point function have a much larger separation at the boundary
than the geodesics in the auxiliary spacetime for the EE. In spite of this difference,
in both cases the geodesics reach similarly far into the bulk. This makes it obvious
why we cannot calculate the EE for as large separations as the two-point functions.

According to chapter 4.3.2 we can calculate the length of the geodesics and there-
fore conclude the evolution of the two-point function and EE from the evolution
of the geodesics. We plot the two-point function (Fig. 17) using equation (4.4)
and the entanglement entropy density (Fig. 18), which is directly proportional to
the length of the geodesic. The result of this calculation resembles the events of
the colliding shock waves.

Looking at the two-point function first (Fig. 17) we can assume that the sys-
tem is initially in a correlated vacuum state. At least in the case of narrow shocks
and sufficiently small separations the two-point function is 1. For larger separa-
tions as well as for wide shocks, the correlations are already destroyed when our
time evolution starts. This is due to the restrictions of our possible calculational
domain. As the shock waves approach each other, also short range correlations
are destroyed. Right before the collision reaches its maximum, most correlations
are gone. In the collision, new correlations can form, due to interactions of the
shocks and the two-point function grows again. For wide shocks the correlations
grow until the thermal value is approached from below. In the case of narrow
shocks, the correlations after the collisions even exceed the correlations before and
thermalize to a constant value.

Comparing the time evolution for different separations, we can see a similar behav-
ior for both types of initial conditions. As can be expected on general grounds, the
short range correlations are larger than long range correlations. For wide shocks,
we see this behavior throughout the whole evolution, while for the narrow shocks
things change after the collision. In this case the remaining outward traveling en-
ergy density (outgoing shocks) has a stronger influence on long range correlations
than on short range ones.

Further, the thermalization occurs earlier, the smaller the separation length was
chosen. This mirrors the same behavior described above, namely that short range
correlations leave the area of influence of the remaining shocks earlier.
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a) narrow shocks b) wide shocks

Figure 17: Two-point function for several separations µl. The vertical red line
marks the collision time when the energy density at y = 0 reaches its
maximum.

a) narrow shocks b) wide shocks

Figure 18: Entanglement entropy for several separations µl. The vertical red line
marks the collision time when the energy density at y = 0 reaches its
maximum.
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To present the results for the EE in the clearest way (Fig. 18) we subtracted
the initial value, such that the system starts with zero entanglement. In the time
evolution of the EE we can identify four different regions, the rapid initial growth,
the linear growth, the post collisional regime and the late time regime.

The rapid initial growth starts as soon as some energy density enters the entan-
gling region. The growth is faster for the narrow shocks, because the rate at which
energy density enters the region is higher. Therefore, the first regime is not very
pronounced for the wide shocks, but this might also be owed to the calculational
domain, which starts too late.

The linear growth follows this initial phase and lasts nearly until the collision
reaches its maximum. For larger separations the slope of this linear growth is
steeper.

The maximum EE is reached in the post collisional regime, right after the collision.
This delay is more pronounced for the wide shocks, where the entanglement falls
off without any features. In the case of narrow shocks, a shoulder appears2 shortly
after the longitudinal pressure has its minimum and the transversal pressure has
its maximum (compare 3.3 and Fig. 10a) and 11a)).

The behavior in the late time regime can be described by a polynomial fall of

SEE ∼ t−an,w , (5.1)

where the exponent depends on the initial conditions and the chosen separation
l, shown in table 1. This late time behavior can be compared to the late time
behavior of an effective entropy density

seff =

− l
2∫

− l
2

dy S3(rh, t, y), (5.2)

where the function S is evaluated at the position of the apparent horizon. The spa-
tial interval of the integration coincides with the entangling region at the boundary.
As shown in table 2, the coefficient barely depends on the separation. It is ex-
pected that for very late times and large separations, the effective entropy and the
EE show the same behavior.

2It turned out that this feature turns into a minimum and an additional maximum, if the initial
conditions are changed to even narrower shocks [46].
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Table 1: Late time fit for the entanglement entropy.

l=0.5 l=1.0 l=1.5
an 1.84 1.82 1.80
aw 2.07 1.95 1.78

Table 2: Late time fit for the effective entropy.

l=0.5 l=1.0 l=1.5
an 0.94 0.95 0.96
aw 1.14 1.14 1.14

5.2. Tracking a shock wave

A different approach to observe the time evolution of the system is to follow the
center of one shock with the boundary region and calculate the EE. Addition-
ally to the calculation with separation matched to the FWHM of wide and narrow
shocks, separations µl = 0.6 and µl = 0.8 were used. These separations cover most
of the narrow shocks, but only a small part of the wide ones. For the same reason
as before, we normalize the EE such that there is no entanglement at the beginning.

The evolution shown in Fig. 19 and Fig. 20 has three different parts, as we
track the maximum of the energy density of one shock numerically. Looking at
the l.h.s. of the figures, we can see that the geodesics follow the incoming shock
until the maxima cannot be distinguished anymore. This happens at µt ≈ 1.0 for
wide and µt ≈ 1.2 for narrow shocks. In the second part the entangling region
stays central until µt ≈ 2.1 (µt ≈ 1.6) when the wide (narrow) shocks separate
again. After that it is possible to follow the maximum again. The evolution of the
EE is shown on the r.h.s. of the two figures. The transitions between the three
parts cause small bumps as the entangling region changes discontinuously.

Starting with zero entanglement, the EE increases very fast once the shocks ap-
proach each other. For large separations this growth is even faster than for smaller
ones. The evolution in the second part is identical (except for the normalization)
with the results above, because we calculate with a central region again. In the
third part the two different shocks show a qualitatively different behavior, similar
to the calculation with central regions described above. For narrow shocks an
additional shoulder3 appears, while the EE of the wide shocks falls off without

3As before, it turned out that this feature turns into a minimum and an additional maximum,
if the initial conditions are changed to even narrower shocks [46].
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a) geodesics b) entanglement entropy

Figure 19: a) Geodesics (orange) following one of the narrow shocks. The green
dots show the initial ansatz and the energy density is shown in the
contour plot. b) The evolution of the EE for several separations.

a) geodesics b) entanglement entropy

Figure 20: a) Geodesics (orange) following one of the wide shocks. The green dots
show the initial ansatz and the energy density is shown in the contour
plot. b) The evolution of the EE for several separations.
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any features. The fall off happens in both cases faster than for central regions and
even drops below the initial value. This mirrors the behavior of the energy density,
which decreases along the moving direction of the shocks, while it increases in the
forward light cone of the collision. From a particle perspective this means that
more and more particles leave the light cone and cannot be entangled anymore.
The fall off is even faster for larger regions.

5.3. Correlation of two colliding shocks

A last approach of investigating the system is to calculate the correlation between
the shocks, instead of two fixed points. Therefore the endpoints of the geodesics are
attached to the centers of the shocks at each point in time. During the collision
there are no distinct maxima of the energy density detectable, so the minimal
separation was fixed to three times the cutoff. To normalize the two-point function
at each time step we used geodesics in pure AdS with the same separation

〈O(t, ~x)O(t, ~x′)〉normalized ∼ e−L+L0 , (5.3)

where L is the length of the geodesic in the shock wave geometry and L0 is the
length of the ansatz in pure AdS spacetime. In Fig. 21 and Fig. 22 the setup and
the result is shown for narrow and wide shocks respectively.

In both cases the initial growth of the correlation increases linearly until the plateau
is reached, although the growth is much faster for the wide shocks. The constant
interval accounts to the fixed separation until the shocks separate again. After
the collision, the two calculations show a qualitatively different result. While the
correlations decrease monotonically for the wide shocks, for narrow shocks they
only decrease slightly until a local minimum occurs after the collision and the
correlations start to grow again. After some time a maximum is reached and the
correlations fall off similar to the wide shocks.

This behavior can be related to the transparency and full stopping scenario dis-
cussed in [18]. The correlations increase until the wide shocks are fully stopped
and then decrease as a result of the hydrodynamic explosion. For narrow shocks
on the other hand, due to the transparency, the shock waves are just altered in
shape when passing each other. Shortly after the collision a plasma forms, which
causes the further increase of correlations. At some later point in time the shocks
are separated so much, that the correlations are destroyed.
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a) geodesics

b) two-point function

Figure 21: Geodesics (orange curves) attached to the maxima of the narrow shocks
(a) for calculating the correlation (b) between them and the energy
density (contour plot). The green curves show the pure AdS ansatz
which is used for normalization.

a) geodesics

b) two-point function

Figure 22: Geodesics (orange curves) attached to the maxima of the wide shocks
(a) for calculating the correlation (b) between them and the energy
density (contour plot). The green curves show the pure AdS ansatz
which is used for normalization.
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6. Conclusion and outlook

6.1. Conclusion

In this work we holographically calculated two-point functions of gauge invariant
operators with large conformal weight and the EE for colliding gravitational shock
waves in AdS5. This geometry is mapped holographically to the collision of local-
ized walls of energy in N=4 SYM and can be seen as a toy model for the formation
of QGP in HICs.

In our setup, the calculation of the two-point functions and the EE amounts to
solving the geodesic equations of motion in particular three-dimensional spacetimes
extracted from the AdS5 shock wave geometry. To do so, we created a Mathemat-
ica package, which can be used to investigate the time evolution of these quantities.

We performed the calculations with narrow and wide shocks as initial conditions
in order to mimic nuclei at different energies and therefore different Lorentz con-
tractions. It turned out that the system is in a correlated state initially and these
correlations between two separated points are destroyed as the shocks approach
each other. The minimum is reached right before the shocks overlap completely.
New correlations are formed in the collision and the two-point functions grow
again. While in the case of wide shocks the correlations are restored and approach
the initial value from below, for narrow shocks they exceed this value and settle
to the equilibrium value from above.

The EE was normalized to zero at the beginning and grows as the shocks enter
the considered entangling region. After the rapid initial growth the EE continues
growing in a linear way until a maximum is reached shortly after the collision.
After the collision, the EE falls off slowly to the finite value. For the wide shocks
this happens without any special features, while in case of narrow shocks there
appears an additional shoulder.

Beside the calculations for fixed central separations and entangling regions, we
performed calculations for two different approaches. First we took a closer look at
the correlations between the shock waves (i.e. the centers of the energy density).
As expected, the correlations grow, while the shocks approach each other. After
the collision the correlations fall off for the wide shocks, while they grow again
before falling off for the narrow shocks. For the EE we chose the entangling region
in such a way, that it follows one shock.
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This scenario mirrors the results obtained before, but also shows that the EE
falls below the initial level after the collision. This can be explained by the fact
that the energy density leaves the entangling region faster and the influence of the
second shock is further away.

In all calculations we found a qualitatively different behavior for the two initial con-
ditions. Having the transparency and full stopping scenario in mind, this suggests
to use the EE as order parameter for the transition between these two regimes.

6.2. Outlook

While writing this work, we got another set of initial conditions, even narrower
shocks than described above. Although the results are not included here, all cal-
culations described in this work were also performed for these initial data. The
combined results can be found in [46].

A minor extension would be to generate geometries in which the shocks collide
at a later time. This would allow to get more insight into the early time behavior,
which is excluded due to limitations of the calculational domain. Further, nor-
malizing the energy densities of the shock to those of real HICs would be a small
adjustment to this setup.

As we have shown in this work, the interplay between the components of the
EMT and the two-point function and the EE is rather complicated and hard to
study in the shock wave geometry. It would be interesting to use simpler, homoge-
neous geometries where the connection between the EMT and the correlations and
entanglement in the system should be more obvious. This would allow us to find
qualitative relations between the time evolution of the EMT and the two-point
function and the EE.

Going beyond the current setup, possible interesting extensions of this work are
as follows:

• An obvious drawback of our approach was the assumption of infinite cou-
pling, while in real HICs the coupling is large, but not infinite. Including
finite coupling corrections would amount to including string corrections in
the corresponding gravity action resulting in modified equations of motion.
It would be interesting to study the influence of such corrections on observ-
ables like the EMT.
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• Another point is that we calculate the two-point function only in the geodesic
approximation. A possible extension would be to compute exact two-point
functions for operators sourced by an additional scalar field in the bulk. This
amounts to performing the gravity calculation with a non-vanishing EMT in
the bulk and solving the equations of motion for the scalar field coupled to
the metric.

• In our setup we calculate the EE for infinite stripe regions, where the com-
putation reduces to finding geodesics in an auxiliary spacetime. For more
general regions, e.g. compact regions like a sphere, one has to find genuine
extremal surfaces. This is a much harder task than solving the geodesic
equations. Existing tools (like surface evolver [47]) for doing this could be
used, but need to be adapted for our system. This would allow to investigate
the shape dependence of the EE in the shock wave setup along the lines of
[48].
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A. The relaxationPackage

As part of this work we created a Mathematica package for the relaxation of
geodesics. The files are accessible at www.christianecker.com. In this appendix we
will briefly describe the functionality and how to use it.

The main function of the package is to perform the relaxation method to solve
the geodesic equations for a given geometry. As described in chapter 4, the ge-
ometry is either given by equation (4.5) for calculating the two-point function or
equation (4.33) for the EE. The ansatz for the solution is a geodesic in pure AdS
spacetime or in a geometry conformal to AdS, according to chapter 4. In the
future the functionality will be extended to other asymptotically AdS geometries
(like the homogeneous isotropization or boost invariant systems).

To study the time evolution we simply use the calculated geodesic for one point
in time as ansatz for the next relaxation, a small time step later. This reduces the
amount of iterations opposed to using a new pure AdS ansatz, if the step size is
small enough.

How to use the relaxationPackage

To use the package, one first needs the geometry data as input. This data is created
by solving Einstein’s equations using the Mathematica notebooks of Wilke van der
Schee, as described in chapter 3. The data file must contain the metric functions
A, B, F and Σ and the gauge function ξ in a certain structure

Put [{Aarray , Barray , Farray , Sarray , k s i a r ray , zarray , yarray } ,
”narrowShocks . i n i ” ] ; ,

such that they can be interpolated after loading them. The arrays containing the
metric functions look like this

Aarray = {{z1 , t1 , y1 ,A[ 1 , 1 , 1 ] } , { z2 , t1 , y1 ,A[ 2 , 1 , 1 ] } , . . . } .

In a new notebook, the package must be loaded and the initialization function
with the location of the data file must be called.

Then the parameters for the calculation have to be defined: gridsize, cutoff zcut,
separation of the geodesic (start, end, number of steps), time parameters (start,
end, number of steps) and error criteria for the iteration to stop (and the shift
along the y-direction).
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Then the function “relaxOneGeodesic“ will calculate the solution to the geodesic
equation at the start time and show the result as well as the apparent horizon in
a plot. Further the length of the geodesic is calculated. This function is mainly
used to check if the parameters are chosen correctly and to get a first impression
of the result.

All of the following functions will return the geodesics in pure AdS spacetime
and in the geometry used as input with all relevant parameters. For instance

geode s i c [ [ j ] ]={ t , l0 , g r i d s i z e , Z ,T,Y, errorFDE , i t e r a t i o n s , geoLength } .

• relaxTevolution

• relaxCorrelation

• relaxFollowShock

• relaxLevolution

The first three functions were used to create the results shown in chapter 5. The
last function performs the evolution of a geodesic with increasing separation at
the start point t0.

The results of the last run are stored in a log file while running, such that they
can be accessed if an error occurs during the calculation (mostly because the sep-
aration is too large at some point or the domain of calculation is to small).

A downside of using the ”EDCRGTC“-package is that one has to quit the kernel
and reload the relaxationPackage before loading a new initial data file.
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