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Motivation

Christian Ecker (TU-Wien) Helsinki, Sep. 27, 2016            2/29 
 

Central question:

How does a strongly coupled quantum system which is initially far-from 
equilibrium evolve to its equilibrium state?

[picture: S. Schlichting]



  

Quark-gluon plasma in heavy ion 
collisions

Quark-gluon plasma (QGP) is a deconfined phase of quarks and gluons
produced in heavy ion collision (HIC) experiments at RHIC and LHC.
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Why AdS/CFT?
The QGP produced in HIC's behaves like a strongly coupled liquid rather 
than a weakly coupled gas.
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Perturbative QCD? Lattice QCD?
Not at strong

 coupling!
Not for dynamics!



  

AdS/CFT correspondence
AdS/CFT correspondence:

Type IIB string theory on AdS
5 
x S5 is equivalent to 

N =4 super symmetric SU(N
C
) Yang-Mills theory in 4D.

[Maldacena 97]

Supergravity limit:

Strongly coupled large N
C
 N =4 SU(N

C 
) SYM theory is 

equivalent to classical supergravity on AdS
5

Boundary:
4-dim. CFT

Bulk:
5-dim. GR

z

Strategy:

● Use N=4 SYM as toymodel for QCD in the strongly coupled regime.
● Build a gravity model dual to HICs, like colliding gravitational shock waves.
● Switch on the computer and solve the 5-dim. gravity problem numerically.
● Use the holographic dictionary to compute observables in the 4 dim. field 

theory form those gravity result. 
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Holographic thermalization

Thermalization       =    Black hole formation
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Solving time-dependent Einstein 
equations on asymptotically AdS
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● BC's: boundary metric is 4-dim Minkovski
          = background metric of the boundary QFT

● IC's: two gravitational shock waves in AdS 
          = Lorentz contracted nuclei in the QFT

We want to solve the 5 dim. (vacuum) Einstein equations (EE) with negative 
cosmological constant 

AdS is not globally hyperbolic – need IC's & BC's to 
formulate a well defined initial value problem (IVP).



  

Isotropization of a homogeneous 
N =4 SYM plasma

A homogeneous but initially highly anisotropic  (N =4 SYM) plasma 
relaxates to its isotropic equilibrium state.

The dual gravity model describes the formation of a black brane in an 
anisotropic AdS5 geometry.
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[Chesler-Yaffe 09]

[CE-Grumiller-Stricker 15]



  

Characteristic formulation
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● We consider the following homogeneous and anisotropic ansatz for the 
metric in Eddington-Finkelstein coordinates

● At each                    slice we solve the ODEs with a spectral method.
● For the time evolution we use the 4th order Runge-Kutta method.

● In these coordinates the Einstein equations decouple into a nested set of ODEs

● BC's: We infer the boundary metric to be conformally Minkovski

IC's:

Constraint



  

Field redefinitions
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The previous formulas can be written down nicely in a paper but they are 
not very useful for a numerical treatment.

● The inverse radial coordinate            transforms the AdS-boundary to           .

● The following redefinitions give finite metric functions suitable for numerics

● From the new fields one can directly read of the components of the EMT

● Residual gauge freedom                        can be useful to fix the position of the 
horizon.



  

Two point functions
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Equal time 2-point functions for operators              of large conformal 
weight  can be computed form the length of geodesics. [Balasubramanian-Ross 00]

zgeodesic 

w, y, ...

x

t=const.D dim. CFT

UV cut off 
in CFT

D+1 dim. GR

x x'



  

Entanglement entropy

Divide the system into two parts A,B.
The total Hilbert space factorizes:

quantum field theory

lattice model

BA

A B

The reduced density matrix of A is 
obtained by the trace over 

Entanglement entropy is defined as the 
von Neumann entropy of 

A
:
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Entanglement entropy in a two 
quantum bit system

Entanglement entropy is a measure for entanglement in a quantum system.

A (maximally) entangled state in a two spin 1/2 system:

Alice Bob

?

A product state (not entangled) in a two spin 1/2 system:

Alice Bob

? ?

Consider a quantum system of two spin 1/2 dof's.
Observer Alice has only access to one spin and Bob to the other spin. 
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A

B

L

Entanglement entropy in quantum 
field theories

x

B A B

L

1+1 dim. CFTs

With the replica method one gets analytic results 
for 1+1 dim. CFTs.

3-sheeted Riemann surface

One finds universal scaling with interval size:

UV cut off

central charge of the CFT

The Basic Method to compute entanglement entropy in quantum field theories 
is the replica method.

Notable generalization: 1+1 dim. Galilean CFTs

AdS/CFT provides a simpler method that works also in 
higher dimensions.

Involves path integrals over n-sheeted Riemann surfaces ~ it's complicated!

[Holzhey-Larsen-Wilczek 94]
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[Bagchi-Basu-Grumiller-Riegler 15]



  

Holographic entanglement entropy

A
B

zextremal 
surface 

w, y, ...

x

t=const.

[Ryu-Takayanagi 06,
Hubeny-Rangamani-Takayanagi 07]

D dim. CFT

UV cut off 
in CFT

D+1 dim. GR

Within AdS/CFT entanglement entropy can be computed form the area of 
minimal (extremal) surfaces in the gravity theory. 
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Holographic entanglement entropy
● In practice computing extremal co-dim. 2 hyper-surfaces is 

numerically involved.

● Can we somehow simplify our lives? 

[E. Tonni 14: minimal surface for a star 
shaped boundary region (red) in AdS4 
computed with Surface Evolver]

Yes we can!

[work in progress: CE-Grumiller-Khavari]
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x
2
, x

3
, ...

A

homogeneous
directions

B

x
1

geodesic 

Entanglement entropy from 
geodesics

Consider a stripe region of infinite extend in homogeneous directions of the geometry.
The entanglement entropy is prop. to the geodesics length in an auxiliary spacetime.

L
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Numerics: relax, don't shoot!

● There are two standard numerical 
methods for solving two point 
boundary value problems:
 
Shooting:
Very sensitive to initialization on 
asymptotic AdS spacetimes.

Relaxation:
Converges very fast if good initial 
guess is provided.

Geodesic equation as two point boundary value problem:

[see Numerical Recipes]

BC's:
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Holographic shock wave collisions
HIC is modeled by two colliding sheets of energy with infinite extend in transverse 
direction and Gaussian profile in beam direction. [Chesler-Yaffe 10]
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Initial conditions
● The pre-collision geometry describing two shocks moving in      -direction in 

Fefferman-Graham coordinates                can be written down explicitly

● The function              is an arbitrary function for which we choose a Gaussian

● In this gauge the EMT describes two lumps of energy with maximum overlap at

● For the time evolution these initial conditions need to be (numerically) transformed 
to Eddington-Finkelstein gauge.
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Wide vs. narrow shocks
         Two qualitatively different dynamical regimes

● Wide shocks (~RHIC): full stopping

[Solana-Heller-Mateos-
van der Schee 12]

● Narrow shocks (~LHC): transparency
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Violation of the null energy condition

● In narrow shock wave collisions the null energy condition (NEC) is violated 
in some region in the forward light cone shortly after the collision.

“Well behaved” classical theories satisfy the null energy condition (NEC)

● In quantum theories the NEC can be violated. [Epstein 65 ]
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The quantum null energy condition 
is (preliminarily) fulfilled 

[work in progress: CE-Grumiller-Van der Schee-Stanzer]

Recently the quantum null energy condition (QNEC) was proposed [Bousso 15]

● Our preliminary results suggest that the QNEC is fulfilled.
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Geodesics (2PF case)
● In the case of 2-point functions the geodesics can reach beyond the apparent horizon.
● Our numerical results suggest that there exists maybe something like a 2-point function 

horizon.
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Extremal surfaces (EE case)
● In the case of entanglement entropy the extremal surfaces do not reach beyond the AH.
● If there is something like an entanglement entropy horizon it is very close to the AH.
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Time evolution of two-point functions
Characteristic behavior:

● Rapid onset of linear de-correlation before 
the collision.

● Linear correlation restoration right after the 
collision.

● Correlation overshooting of narrow shocks. 
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Correlations between shocks

Characteristic behavior:
● Linear growth before the collision.
● Wide: Immediate decay after the collision.
● Narrow: Significant growth of correlations 

after the collision before they eventually to 
decay.
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Time evolution of entanglement 
entropy

Characteristic behavior:
● Rapid initial growth when the shocks enter the entangling region.
● Linear growth when the shocks start to overlap.
● Post collisional regime which is a featureless fall off for wide shocks and 

shows a characteristic shoulder for narrow shocks.
● Late time regime: polynomial fall off very close to 1/t.
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Summary
● AdS/CFT allows to study the real time dynamics of strongly coupled QFT's 

by solving the IVP of (classical) supergravity theories.

● The NEC can be violated in holographic shock wave collisions, but the QNEC 
seems to be fulfilled.

● Entanglement entropy may serve as an order parameter for the full 
stopping–transparency transition.

● Interestingly the 2-point functions contain information from behind the 
apparent horizon, where the entanglement entropy does not.

Work in progress
● Improve the quality of the QNEC simulation.

● Going beyond supergravity: string corrections, semi-holography, …
[CE-Mukhopadhyay-Preiss-Rebhan-Stricker]

[CE-Grumiller-Van der Schee-Stanzer]
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