Exploring nonlocal observables in shock wave collisions

Based on work with Daniel Grumiller, Stefan Stricker 1506.02658 (JHEP); & Wilke van der Schee, Philipp Stanzer 1609.03676

Christian Ecker (TU-Wien)

Helsinki September 27, 2016

FШF

Outline

Motivation

QGP in heavy ion collisions

Basics

AdS/CFT, numerical GR on AdS, 2-point functions, entanglement entropy

Results

Time evolution of EMT, geodesics & extremal surfaces, 2-point functions, entanglement entropy

Summary & Outlook

Motivation

Central question:

How does a **strongly coupled** quantum system which is initially **far-from equilibrium** evolve to its **equilibrium state?**

Quark-gluon plasma in heavy ion collisions

Quark-gluon plasma (QGP) is a **deconfined phase of quarks and gluons** produced in **heavy ion collision** (HIC) experiments at **RHIC** and **LHC**.

Why AdS/CFT?

The QGP produced in HIC's behaves like a **strongly coupled liquid** rather than a **weakly coupled gas**.

Lattice QCD?

Perturbative QCD?

Christian Ecker (TU-Wien)

AdS/CFT correspondence

AdS/CFT correspondence: [Maldacena 97]

Type IIB string theory on $AdS_5 \times S^5$ is equivalent to $\mathcal{N}=4$ super symmetric SU(N_c) **Yang-Mills theory** in 4D.

Supergravity limit:

Strongly coupled large N_c \mathcal{N} =4 SU(N_c) SYM theory is equivalent to **classical supergravity** on AdS₅

$$e^{-S_{\text{sugra}}[\phi]} |_{\substack{z \to 0 \\ z \to 0}} \phi = \phi_0 = \left\langle \exp\left(\int \mathrm{d}^d x \phi(x) \mathcal{O}(x)\right) \right\rangle_{CFT}$$

Strategy:

- Use $\mathcal{N}=4$ SYM as **toymodel** for **QCD** in the strongly coupled regime.
- Build a gravity model dual to HICs, like colliding gravitational shock waves.
- Switch on the computer and solve the 5-dim. gravity problem **numerically**.
- Use the **holographic dictionary** to compute **observables in the 4 dim. field theory** form those gravity result.

7

Boundary: 4-dim. CFT

Bulk:

5-dim. GR

Holographic thermalization

Thermalization = Black hole formation

Solving time-dependent Einstein equations on asymptotically AdS

We want to solve the 5 dim. (vacuum) Einstein equations (EE) with negative cosmological constant Λ

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 0.$$

AdS is **not globally hyperbolic** – need **IC's & BC's** to formulate a **well defined initial value problem** (IVP).

- BC's: boundary metric is 4-dim Minkovski = background metric of the boundary QFT
- IC's: two gravitational shock waves in AdS = Lorentz contracted nuclei in the QFT

Isotropization of a homogeneous $\mathcal{N}=4$ SYM plasma

A homogeneous but initially highly anisotropic (\mathcal{N} =4 SYM) plasma relaxates to its isotropic equilibrium state. [Chesler-Yaffe 09]

The dual gravity model describes the formation of a black brane in an anisotropic AdS₅ geometry.

Characteristic formulation

• We consider the following **homogeneous** and **anisotropic** ansatz for the metric in **Eddington-Finkelstein coordinates**

$$ds^{2} = -A(r, v)dv^{2} + 2dvdr + \Sigma(r, v)^{2}(e^{-2B(r, v)}dx_{\parallel}^{2} + e^{B(r, v)}d\vec{x}_{\perp}^{2}).$$

• BC's: We infer the boundary metric to be conformally Minkovski

$$ds^2|_{r \to \infty} = r^2(-dt^2 + d\vec{x}^2).$$

• In these coordinates the Einstein equations decouple into a nested set of ODEs

- At each v = const. slice we **solve the ODEs** with a **spectral method**.
- For the **time evolution** we use the **4**th **order Runge-Kutta method**.

Field redefinitions

The **previous formulas** can be written down nicely in a paper but they are **not very useful for a numerical treatment**.

- Residual gauge freedom $r \to r + \xi(v)$ can be useful to fix the position of the horizon.
- The inverse radial coordinate $z = \frac{1}{r}$ transforms the AdS-boundary to z = 0.
- The following redefinitions give finite metric functions suitable for numerics $A(z,v) \rightarrow \frac{1}{z^2} + zA(z,v), \quad \Sigma(z,v) \rightarrow \frac{1}{z} + z^2\Sigma(z,v), \quad B(z,v) \rightarrow z^3B(z,v).$
- From the new fields one can directly read of the components of the EMT

$$\begin{split} b_4(t) &= B'(0,t) \,, \quad a_4 = A'(0,t) \,, \\ \mathcal{E} &= -\frac{3}{4}a_4 \,, \quad \mathcal{P}_{||}(t) = -\frac{1}{4}a_4 - 2b_4(t) \,, \quad \mathcal{P}_{\perp}(t) = -\frac{1}{4}a_4 + b_4(t) \,, \\ \langle T^{\mu\nu} \rangle &= \frac{N_c^2}{2\pi^2} \text{diag}[\mathcal{E}, \mathcal{P}_{||}(t), \mathcal{P}_{\perp}(t), \mathcal{P}_{\perp}(t)] \,. \end{split}$$

Christian Ecker (TU-Wien)

Two point functions

Equal time 2-point functions for operators $\mathcal{O}(t, x)$ of large conformal weight Δ can be computed form the length of geodesics. [Balasubramanian-Ross 00]

Entanglement entropy

Divide the system into **two parts** A,B. The total Hilbert space factorizes:

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

The reduced density matrix of A is obtained by the trace over $\mathcal{H}_{\mathcal{B}}$

$$\rho_A = \mathrm{Tr}_B \rho$$

Entanglement entropy is defined as the **von Neumann entropy** of ρ_{A} :

$$S_A = -\mathrm{Tr}_A \rho_A \mathrm{log} \rho_A$$

Entanglement entropy in a two quantum bit system

Consider a quantum system of two spin 1/2 dof's. Observer Alice has only access to one spin and Bob to the other spin.

A product state (not entangled) in a two spin 1/2 system:

$$\psi\rangle = \frac{1}{2}(|\uparrow_A\rangle + |\downarrow_A\rangle) \otimes (|\uparrow_B\rangle + |\downarrow_B\rangle) \quad \Phi$$

Alice Bob

 $S_A = 0$

A (maximally) entangled state in a two spin 1/2 system: $S_A = \log 2$

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow_A\rangle \otimes |\downarrow_B\rangle - |\downarrow_A\rangle \otimes |\uparrow_B\rangle) \quad (\uparrow \uparrow_B\rangle) \quad (\downarrow A) \otimes |\uparrow_B\rangle \quad (\downarrow A) \otimes |\uparrow_B\rangle) \quad (\downarrow A) \otimes |\downarrow_B\rangle = 0$$
Alice Bob

Entanglement entropy is a **measure** for **entanglement** in a quantum system.

Entanglement entropy in quantum field theories

The Basic Method to compute entanglement entropy in quantum field theories is the **replica method**.

Involves path integrals over n-sheeted Riemann surfaces ~ it's **complicated!**

With the **replica method** one gets **analytic results** for **1+1 dim. CFTs**. [Holzhey-Larsen-Wilczek 94]

One finds **universal scaling** with interval size:

central charge of the CFT $S_A = \frac{c}{3} \log \frac{L}{a} + finite$

UV cut off

3-sheeted Riemann surface

B

Notable generalization: 1+1 dim. Galilean CFTs [Bagchi-Basu-Grumiller-Riegler 15]

AdS/CFT provides a simpler method that works also in higher dimensions.

Holographic entanglement entropy

Within AdS/CFT entanglement entropy can be computed form the area of **minimal (extremal) surfaces** in the gravity theory.

Holographic entanglement entropy

• In practice computing extremal co-dim. 2 hyper-surfaces is numerically involved. [work in progress: CE-Grumiller-Khavari]

Entanglement entropy from geodesics

Consider a stripe region of infinite extend in homogeneous directions of the geometry. The entanglement entropy is prop. to the geodesics length in an auxiliary spacetime.

Christian Ecker (TU-Wien)

Numerics: relax, don't shoot!

Geodesic equation as two point boundary value problem:

$$\ddot{X}^{\mu} + \Gamma^{\mu}_{\alpha\beta} \dot{X}^{\alpha} \dot{X}^{\beta} = -J \dot{X}^{\mu} \,,$$

 ${\rm BC's:}\, X(\pm 1)^{\mu} \equiv (V(\pm 1), Z(\pm 1), X(\pm 1)) = (t, 0, \pm l/2)$

• There are two **standard numerical methods** for solving two point boundary value problems:

[see Numerical Recipes]

Shooting:

Very sensitive to initialization on asymptotic AdS spacetimes.

Relaxation:

Converges very fast if good initial guess is provided.

Christian Ecker (TU-Wien)

Holographic shock wave collisions

HIC is modeled by **two colliding sheets of energy** with **infinite extend in transverse direction** and **Gaussian profile** in **beam direction**. [Chesler-Yaffe 10]

$$ds^{2} = -A(r, v, y)dv^{2} + 2dv(dr + F(r, v, y)dy) + \Sigma(r, v, y)^{2}(e^{-2B(r, v, y)}dy^{2} + e^{B(r, v, y)}d\vec{x}^{2})$$

Christian Ecker (TU-Wien)

Initial conditions

• The pre-collision geometry describing two shocks moving in $\pm \tilde{y}$ -direction in Fefferman-Graham coordinates $(\tilde{r}, \tilde{t}, \tilde{y}, \vec{\tilde{x}})$ can be written down explicitly

$$ds^{2} = \tilde{r}^{2} \eta_{\nu\mu} d\tilde{x}^{\mu} d\tilde{x}^{\nu} + \frac{1}{\tilde{r}^{2}} \left(d\tilde{r}^{2} + h(\tilde{t} + \tilde{y}) (d\tilde{t} + d\tilde{y})^{2} + h(\tilde{t} - \tilde{y}) (d\tilde{t} - d\tilde{y})^{2} \right) \,.$$

- The function $h(\tilde{t} \pm \tilde{y})$ is an arbitrary function for which we choose a Gaussian

$$h(\tilde{t} \pm \tilde{y}) = \frac{\mu^3}{\sqrt{2\pi\omega^2}} e^{-\frac{(\tilde{t} \pm \tilde{y})^2}{2\omega^2}}$$

- In this gauge the EMT describes two lumps of energy with maximum overlap at $\tilde{t}\!=\!0$

$$\tilde{T}^{\tilde{t}\tilde{t}} = \tilde{T}^{\tilde{y}\tilde{y}} = h(\tilde{t} - \tilde{y}) + h(\tilde{t} + \tilde{y}), \qquad \tilde{T}^{\tilde{t}\tilde{y}} = h(\tilde{t} - \tilde{y}) - h(\tilde{t} + \tilde{y}).$$

• For the time evolution these initial conditions need to be (numerically) transformed to Eddington-Finkelstein gauge.

Wide vs. narrow shocks

Two qualitatively different dynamical regimes

[Solana-Heller-Mateosvan der Schee 12]

• Wide shocks (~RHIC): full stopping \mathcal{E}/μ^4 2.01.5

Christian Ecker (TU-Wien)

Violation of the null energy condition

"Well behaved" classical theories satisfy the null energy condition (NEC)

 $T_{\mu\nu}k^{\mu}k^{\nu} \ge 0, \quad k_{\mu}k^{\mu} = 0.$

- In quantum theories the NEC can be violated. [Epstein 65]
- In narrow shock wave collisions the null energy condition (NEC) is violated in some region in the forward light cone shortly after the collision.

The quantum null energy condition is (preliminarily) fulfilled

Recently the quantum null energy condition (QNEC) was proposed [Bousso 15]

 $\langle T_{\mu\nu}k^{\mu}k^{\nu}\rangle \ge \frac{1}{2\pi}S''$.

• Our preliminary results suggest that the QNEC is fulfilled.

Christian Ecker (TU-Wien)

Geodesics (2PF case)

- In the case of **2-point functions** the **geodesics** can **reach beyond the apparent horizon**.
- Our numerical results suggest that there exists maybe something like a 2-point function horizon.

Extremal surfaces (EE case)

- In the case of entanglement entropy the extremal surfaces do not reach beyond the AH.
- If there is something like an entanglement entropy horizon it is very close to the AH.

Time evolution of two-point functions

2.0

1.5

z 1.0 k

0.5

Characteristic behavior:

- Rapid onset of linear de-correlation before the collision.
- Linear correlation restoration right after the collision.
- Correlation overshooting of narrow shocks.

Correlations between shocks

Christian Ecker (TU-Wien)

Time evolution of entanglement entropy

Characteristic behavior:

- Rapid initial growth when the shocks enter the entangling region.
- Linear growth when the shocks start to overlap.
- Post collisional regime which is a featureless fall off for wide shocks and shows a characteristic shoulder for narrow shocks.
- Late time regime: polynomial fall off very close to 1/t.

Christian Ecker (TU-Wien)

Summary

- AdS/CFT allows to study the real time dynamics of strongly coupled QFT's by solving the IVP of (classical) supergravity theories.
- The **NEC can be violated** in holographic shock wave collisions, but the **QNEC** seems to be fulfilled.
- Entanglement entropy may serve as an order parameter for the full stopping-transparency transition.
- Interestingly the 2-point functions contain information from behind the apparent horizon, where the entanglement entropy does not.

Work in progress

• Improve the quality of the QNEC simulation.

[CE-Grumiller-Van der Schee-Stanzer]

• **Going beyond supergravity**: string corrections, semi-holography, ... [CE-Mukhopadhyay-Preiss-Rebhan-Stricker]