

Entanglement Entropy in Shock Wave Collisions

Doktoratskolleg **Particles and Interactions**

Der Wissenschaftsfonds.

Christian Ecker^{1,*}, Daniel Grumiller^{2,*}, Wilke van der Schee^{3,†}, Philipp Stanzer^{4,*}, and Stefan A. Stricker^{5,*} JHEP **11** 2016 054 [hep-th/1609.03676]

1. Introduction

Quark-Gluon Plasma in Heavy Ion Collisions

- -Heavy ion collision experiments at RHIC and LHC produce a deconfied state of quarks and gluons, the so-called quark-gluon plasma (QGP).
- The QGP in these experiments behaves like a strongly coupled **liquid**, not like a weakly coupled gas.
- The plasma thermalizes on a very short time scale ($\approx 10^{-23}$ sec), which is theoretically not well understood yet.
- Due to the strong coupling perturbative QCD is not suitable to study the **quantum dynamics** of these collisions.

• AdS/CFT Correspondence [1]

- AdS/CFT maps strongly coupled supersymmetric Yang-Mills (SYM) theory in 4D to classical gravity on 5D anti-de Sitter (AdS5) space.
- We use the plasma in SYM theory as a **toymodel** for the experimentally realized QGP.

2. Local and Non-Local Observables from AdS/CFT

AdS/CFT allows to compute expectation values of observables in 4D SYM theory from purely geometric objects in the 5D gravity theory such as the metric, geodesics and minimal surfaces.

• Local Observables

- The energy-momentum tensor can be extracted from the **metric** $g_{\mu\nu}$ near the boundary. $\langle T^{\mu\nu}(x) \rangle = -\frac{2}{\det q} \frac{\delta S}{\delta q^{\mu\nu}(x)}$
- Non-Local Observables
- Two-point functions of gauge invariant operators \mathcal{O} with large conformal weight Δ are given by the length of geodesics γ . [2]

$\langle \mathcal{O}(t, \vec{x}) \mathcal{O}(t, \vec{x'}) \rangle \approx e^{-\Delta \text{Length}(\gamma)}$

- The entanglement entropy of a spatial region A is given by the area of a minimal surface Σ . [3] $S_A = -\text{Tr}_A \rho_A \log \rho_A = \frac{\text{Area}(\Sigma)}{4G_N}$

Figure 2: Geometric description of the energy momentum tensor, two-point functions and entanglement entropy in terms of the near boundary metric, geodesics and minimal surfaces.

- Thermalization in the strongly coupled 4D SYM theory is mapped to **black hole formation** in AdS5.

Figure 1: AdS/CFT maps thermalization in the 4D gauge theory (top) to black hole formation in a 5D gravity theory (bottom).

3. Shock Wave Collisions in SYM Theory

Two Lorentz contracted "nuclei" are modelled as Gaussian energy distributions in SYM heading towards each other at the speed of light. The time evolution of the energy-momentum tensor is extracted from a numerical relativity simulation of colliding gravitational shock waves in the 5D gravity theory. [4]

• Energy-Momentum Tensor

- $\langle T^{\mu\nu} \rangle = \frac{N_c^2}{2\pi^2}$
- Wide and narrow shocks show qualitatively different behavior. [5]
- Wide Shocks: Full-Stopping
- Wide shocks stop each other in the collision before they explode hydrodynamically.
- Outgoing shocks are **slowed down**, energy and pressure are positive.
- Narrow Shocks: Transparency
- Narrow shocks **pass each other** almost "transparently" without loosing velocity. - Energy and pressure can be negative.
- Null Energy Condition (NEC) $\langle k^{\mu}k^{\nu}T_{\mu\nu}\rangle \ge 0 \quad \forall \quad k^2 = 0$

4. Geodesics in the Shock Wave Geometry

In the calculation of two-point functions and also for the entanglement entropy we need the length of spacelike geodesics that are attached to the boundary at z=0 and extend into the 5D shock wave geometry. These geodesics can be found by **numerically solving** the **geodesic equation** (1) subject to **boundary** conditions that fix the endpoints at the boundary (z = 0) at some spatial separation l and time t. [7]

$$\ddot{X}^{\mu} + \Gamma^{\mu}{}_{\alpha\beta}\dot{X}^{\alpha}\dot{X}^{\beta} = -J\dot{X}^{\mu}, \quad s.t. \quad X^{\mu}|_{bdry} = (t, 0, \pm l/2)$$
 (1)

Length(
$$\gamma$$
) = $\int_{\gamma} d\sigma \sqrt{g_{\mu\nu} X^{\mu}(\sigma) X^{\nu}(\sigma)}$ (2)

• During the collision a **black hole horizon is formed** in the 5D shock wave geometry. • Near equilibrium geodesics of small separation do not to cross the horizon. • Far from equilibrium geodesics of large separation can cross the horizon.

Figure 3: Energy density \mathcal{E} (top) and NEC (bottom) for wide (left) and narrow shocks (right). The region where the narrow shocks violate the NEC is shown in black (bottom right).

- Narrow shocks can violate the NEC. [6]
- The quantum null energy condition (QNEC) is conjectured to give an upper **bound** for this violation. [8]

*____⊔*t μt

Figure 4: Left: Black hole horizon (black), geodesics of different separation and time (red, green, blue), and energy contours at z=0. Right: Tip of the geodesics at different times.

5. Two-Point Functions

Time Evolution of Two-Point Functions

- The in-going shocks destroy the initial correlations in the system.
- During the collision, when the shocks interact, new correlations are formed and the two-point function grows.
- The correlations of the wide shocks start to grow clearly before the collision (t < 0).
- For narrow shocks the correlations start to grow close to the collision time (t = 0) and significantly overshoot their initial values later on.

Figure 6: Regularized two-point function of various separations l for wide shocks (left) and narrow shocks (right).

Figure 5: We consider geodesics of finite sep. in the long. direction x_{\parallel} .

6. Entanglement Entropy

Time Evolution of Entanglement Entropy

- As the shocks enter the entangling region the entanglement entropy rapidly grows.
- After the rapid initial growth follows a regime of **linear growth** which goes approx. until the shocks collide.
- Narrow shocks reach a global maximum close to the collision time (t = 0), for wide shocks the maximum is clearly delayed.
- For the narrow shocks there is an additional local minimum after the collision, which does not appear for the wide shocks.

Figure 7: *We consider stripe regions* of infinite extent in the trans. dir. \vec{x}_{\perp} . Minimal surfaces reduce to geodesics in an auxiliary spacetime.

Figure 8: Regularized entanglement entropy of various system sizes L for wide shocks (left) and narrow shocks (right).

7. Summary

9. References

- We use collisions of **shock waves in SYM** theory as **toymodel for heavy ion collisions**.
- Within AdS/CFT non-local observables such as two-point functions and entanglement entropy can be computed from geodesics and minimal surfaces in the gravity theory.
- We study the **time evolution** of two-point functions and entanglement entropy and find qualitatively different behavior for narrow and wide shocks.
- Narrow shocks show overshooting in the two-point function and a local minimum in the entanglement entropy after the collision. These features do not appear in the wide shocks.

	8. Contact	
¹ christian.ecker@tuwien.ac.at ⁴ philipp.stanzer@tuwien.ac.at	² grumil@hep.tuwien.ac.at ⁵ stricker@hep.itp.tuwien.ac.at	³ wilke@mit.edu
* Institut für Theoretische Physik	, TU Wien, Wiedner Hauptstr. 8-1	0, A-1040 Vienna, Austria

[†] Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA

- [1] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] doi:10.1023/A:1026654312961 [hep-th/9711200].
- [2] V. Balasubramanian and S. F. Ross, Holographic particle detection, Phys. Rev. D 61, 044007 (2000) doi:10.1103/PhysRevD.61.044007 [hep-th/9906226].
- [3] S. Ryu and T. Takayanagi, *Holographic derivation of entanglement entropy from AdS/CFT*, Phys. Rev. Lett. 96, 181602 (2006) doi:10.1103/PhysRevLett.96.181602 [hep-th/0603001].
- [4] P. M. Chesler and L. G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS_5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 doi:10.1103/PhysRevLett.106.021601.
- [5] J. Casalderrey-Solana, M. P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111, 181601 (2013) doi:10.1103/PhysRevLett.111.181601.
- [6] P. Arnold, P. Romatschke and W. van der Schee, Absence of a local rest frame in far from equilibrium quantum matter, JHEP 1410 (2014) 110 doi:10.1007/JHEP10(2014)110 [arXiv:1408.2518 [hep-th]].
- [7] C. Ecker, D. Grumiller and S. A. Stricker, *Evolution of holographic entanglement entropy in an anisotropic* system, JHEP 1507, 146 (2015) doi:10.1007/JHEP07(2015)146 [arXiv:1506.02658 [hep-th]].
- [8] J. Koeller and S. Leichenauer, *Holographic Proof of the Quantum Null Energy Condition*, arXiv:1512.06109 [hep-th].