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Plan of the talk

First part: Holographic Thermalization

Pre-equilibrium dynamics in relativistic heavy ion collisions
The AdS/CFT approach: thermalization = black hole formation
Numerical relativity on AdS: the Chesler-Yaffe method
Holographic toy models: homogeneous isotropization, shock waves, . . .

Second part: Holographic Entanglement Entropy

Entanglement entropy
The Ryu-Takayanagi proposal: entanglement entropy from extremal surfaces
Geodesics on time dependent backgrounds: a glance behind the horizon?

Summary and Outlook
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Relativistic Heavy-Ion Collisions

Fig. by P. Sorensen and C. Shen
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Pre-equilibrium dynamics in HICs

thermalization (hydronization) = equilibration to hydrodynamic regime
After the thermalization time the EMT is well described by hydrodynamics.

In principle we know the theory which describes the pre-equilibrium phase:
QCD

However we can not solve QCD in this phase:

Perturbative QCD is not valid due to strong coupling.
Time dependent processes are problematic for lattice QCD.

Alternative approach:

Study the dynamics of a toy model for QCD: strongly coupled N = 4
supersymmetric Yang-Mills (SYM) theory
Unfortunately we also can not (directly) solve N = 4 SYM.
However the AdS/CFT correspondence maps N = 4 SYM to classical
gravity.
General relativity we can do very well!
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Holographic principle and AdS/CFT correspondence

Holographic Principle [‘t Hooft 93, Susskind 94]:
A theory of (quantum) gravity in n dimensions has an
equivalent description in terms of a theory without gravity in
n − 1 dimensions.

AdS/CFT correspondence [Maldacena 97]:
N = 4 supersymmetric SU(Nc) Yang-Mills theory (SYM) is
equivalent to type IIB string theory on asympt. AdS5 × S5.

We consider a certain limit of AdS/CFT:
Strongly coupled, large Nc N = 4 SYM theory is equivalent
to classical gravity on AdS5.
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Holographic thermalization

thermalization = black hole formation

Tµν gµν

AdS/CFT translates the physics of thermalization/equilibration on the field
theory side to the formation of a black hole on AdS.
Temperature and entropy of the black hole translate to temperature and
entropy of the field theory.
AdS/CFT relates the EMT Tµν of the field theory to the metric gµν of the AdS
black hole.
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Numerical relativity on AdS: the Chesler-Yaffe method

The aim is to solve the gravitational initial value problem (+BC’s) on AdS to get
the metric gµν .

Characteristic formulation:

ds2 = dt[−Adt + βdr + 2Fidx
i ] + Σ2hijdx

idx j

This special parametrization of AdS decouples the
Einstein eqs. into a nested set of linear ODEs.

ODEs are solved with standard numerical
techniques. (Chebychev spectral method, . . . )

Out-of-equilibrium configurations:

IC’s: anisotropy, shock waves, . . .

BC’s: flat boundary, boundary with time dep.
curvature, . . .

BC's

IC's

Black
Hole

AdS-BH

Pure AdS

Numerical
Relativity

t

r=0 r=1P. Chesler, L. Yaffe, 1309.1439
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Homogeneous isotropization: the beginner problem

Spatial homogeneous, rotational symmetric in transverse plane, but allows for
time dependent pressure anisotropy.

Line element: ds2 = 2drdt − A(r , t)dt2 + Σ(r , t)2
(
e−2B(r ,t)dx2‖ + eB(r ,t)d~x2⊥

)
Energy momentum tensor: 〈Tµν〉 = N2

c
2π2diag[ε,P‖(t),P⊥(t),P⊥(t)]

P. Chesler, L. Yaffe, 0812.2053
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Including longitudinal dynamics: hom. shock waves

Lorentz contracted ions are modeled as is homogeneous and infinitely extended
energy distribution in the transverse plane with a Gaussian profile in the
longitudinal direction.
Gaussians move at the speed of light in the longitudinal direction.
Hydrodynamics applies even when the initial Gauians are still in contact and
the pressure anisotropy is large.
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the diffeomorphism trans-
forming the single shock metric (8) from Fefferman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ +B−. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = − 4
3 [h(v0+z)+h(v0−z)] , f2 = h(v0+z)−h(v0−z).

(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant δ.
This introduces a small background energy density in
the dual quantum theory. Increasing δ causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is ∆z = 6.2/µ. We chose
δ = 0.014µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v= 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the diffeomorphism trans-
forming the single shock metric (8) from Fefferman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ +B−. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = − 4
3 [h(v0+z)+h(v0−z)] , f2 = h(v0+z)−h(v0−z).

(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant δ.
This introduces a small background energy density in
the dual quantum theory. Increasing δ causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is ∆z = 6.2/µ. We chose
δ = 0.014µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v= 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10−4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = −0.23/µ, where P‖ has its
maximum, it is roughly 5 times larger than P⊥. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P‖ is more than 3 times
larger than P⊥.

The fluid/gravity correspondence [17] implies that at
sufficiently late times the evolution of Tµν will be de-
scribed by hydrodynamics. To test the validly of hydro-

P. Chesler, L. Yaffe, 1011.3562
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Homogeneous shock waves: dynamical cross over

Dynamical cross over: wide and narrow shocks give qualitatively different
results
Wide shocks (full stopping): Au Ions at RHIC, Lorentz contraction ≈ 100.
Narrow shocks (transparent): Pb Ions at LHC, Lorentz contraction ≈ 1000.
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FIG. 1. Energy and pressures for collisions of thick (top row) and thin (bottom row) shocks. The grey planes lie at the origin
of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and PL one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of PT , as expected.
A simultaneous rescaling of ρ and w that keeps ρw fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ρtmax ≃ 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size ∆z ≃ 2.4w in
which the flow velocity is everywhere ∣v∣ ≲ 0.1. Similarly,

J. Casalderrey-Solana, M. Heller, D. Mateos, W. van der Schee, 1305.4919
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Including transverse dynamics: inhom. shock waves

The aim is to bring simulation closer to experiment.
To account for elliptic flow in non-central collisions one needs dynamics in the
transverse plane.
In this simulation linearized perturbations are modelled on top of the fully
non-linear, homgenous solution.

2

background counterpart for the functions C,D and G.
The value of k must be fixed from the beginning.

These linearized equations are too long to be
reproduced here but they can be found in [1]. But it
is important to write them in a fully covariant way using
derivatives along outgoing null rays ḣ, as defined in

ḣ ≡ ∂th+
1

2
A∂rh , d3h ≡ ∂yh− F∂rh . (3)

Note that d3h is a derivative in the longitudinal
direction orthogonal to radial null geodesics. Taking into
account the previous decomposition into background and
fluctuations, these definitions apply to the fluctuations as

˙δh = ∂t(δh) +
1

2
A∂r(δh) +

1

2
δA∂rh0 ,

d3(δh) = ∂y(δh)− F ∂r(δh)− δF ∂rh0 . (4)

The asymptotic analysis of Einstein’s equations near the
boundary provides a large r expansion, where we include
the extra gauge freedom ξ described above, of the form

A = (r + ξ)2 − 2∂tξ +
a4 + eikx1δa4

r2
+O(r−3) , (5a)

F = ∂yξ +
f4 + eikx1δf4

r2
+O(r−3) , (5b)

G = eikx1
δg4
r2

+O(r−3) , (5c)

B =
b4 + eikx1δb4

r4
+O(r−5) , (5d)

C = eikx1
δc4
r4

+O(r−5), D = eikx1
δd4
r4

+O(r−5) , (5e)

Σ = r + ξ +O(r−7) , (5f)

We identify a4, δa4, b4, δb4, δc4, δd4, f4, δf4, δg4 as
the normalizable modes which are related to the
stress-energy tensor of the dual theory. They are
functions of t, y and they are not completely independent,
since the previous expansions solve the equations as long
as the background coefficients satisfy

∂ta4 = − 4
3 ∂yf4 , ∂tf4 = − 1

4∂ya4 − 2∂yb4 , (6)

and the inhomogeneities’ coefficients satisfy

∂tδa4 = − 4
3 (∂yδf4 + ik δg4) ,

∂tδf4 = − 1
4∂yδa4 − 2∂yδb4 + ∂yδc4 + ik δd4 , (7)

∂tδg4 = − 1
4 ik δa4 + ik δb4 − ik δc4 + ∂yδd4 .

These equations will be used as boundary conditions
during the evolution. They can also be derived from
the conservation equations of the stress-energy tensor
∇µTµν = 0, and have a physical interpretation in terms
of continuity conditions for the transport of energy and
momentum.

Specifically, the expectation value of the stress-energy
tensor of this problem contains energy density,
momentum densities, pressures, and shear stress terms:

〈Tµν〉 =
N2

c

2π2


E Sy Sx1 0

Sy Py T 0

Sx1 T Px1 0

0 0 0 Px2

 . (8)

After transforming the asymptotic expansions (5)
to Fefferman-Graham coordinates, we can use the
holographic renormalization prescription to extract the
relations

E = − 3
4 (a4 + δa4) , Sy = f4 + δf4 , (9a)

Py = − 1
4 (a4 + δa4)− 2(b4 + δb4) + δc4 , (9b)

Sx1 = δg4 , Px1 = − 1
4 (a4 + δa4) + b4 + δb4 − δc4 , (9c)

T = δd4 , Px2
= − 1

4 (a4 + δa4) + b4 + δb4 , (9d)

where we have omitted the eik x1 factors in front of every
δ term.
3. Numerics Overview. A generic description of
the numerical approach that can be applied to solve the
dynamics of this problem is found in [14]. By applying
the characteristic formulation within AdS, the set of
coupled partial differential equations of GR can be very
conveniently written as a nested set of linear ordinary
differential equations.

It is necessary to specify the spatial part of the metric
on the initial time slice, except for the determinant
(except Σ). Thus, one starts with the initial data
provided for Fin = {B0, δB, δC, δD}. From there, the
nested structure allows to solve for the other functions
step by step, following the sequence Fin → S0 → F0 →
Ṡ0 → Ḃ0 → A0 → Ḟ0 → δS → δF → δG → ˙δS →
˙δB → ˙δC → ˙δD → δA. Note that the dotted functions

are solved as if they were unrelated to their undotted
counterparts.

µt

µy

δE

FIG. 1: Inhomogeneity on the energy density, δE (from δa4),
for k = 0.2, as a function of longitudinal coord. y and time t.

3

µt
µy

δP

FIG. 2: Inhomogeneity on the pressure anisotropy, defined by
δP = δ(Px1 + Py − 2Px2)/3, for k = 0.2, as a function of
longitudinal coordinate y and time t.

Those steps correspond to first the 6 equations for
the background, and then the 8 linearized equations for
the inhomogeneities. In our approach, we solve for all
14 of these equations at every time slice and afterwards
invert (3-4) to obtain time derivatives and evolve the Fin
to the next slice.

In addition, there are also 4 constraints: one is of the
background and solves for ∂tṠ, while the other three
solve for ∂t( ˙δS), ∂r( ˙δF ) and ∂r( ˙δG). Their asymptotic
analysis near the boundary provides the conditions (6-8),
which must be imposed as boundary conditions during
the evolution. Given their self-fulfilling nature, the
constraints can be left out of the calculation, only to be
used as a convergence check of the numerics.

The initial data of the evolution is extracted from the
metric of two planar shocks moving towards each other.
For the calculations presented here, the same shocks as in

[5] were considered, H(t, y) ≡ µ3

√
2πw2

e−(t∓y)
2/2w2

, with

w = 0.75/µ. This provides initial data for B0(t = 0, r, y),
and for the coefficients a4(t = 0, y) and f4(t = 0, y).
But now this must be supplemented with initial data for
the perturbations. In principle, any initial state can be
considered, as long as Einstein’s equations are satisfied
(the inhomogeneities may take any shape).

In our calculations, we simply chose δa4, δf4, δg4
so that the inhomogeneity behaves as a planar wave
proportional to the amplitude of the background at each
point, that is, a4 → a4(1 + εeik x1), f4 → f4(1 + εeik x1)
and δg4 = 0. And for the bulk profiles of δB, δC, δD, we
chose the simplest setup, given by the first terms in (5).
This fixes the radial dependence and the boundary values
are determined by (8) so that

δB(0, r, y) =
a4(0, y)

4r4
, δC(0, r, y) = δD(0, r, y) = 0 . (10)

For these initial conditions, function δC acquired a profile
spontaneously, whereas δD and δG remained zero during
the time evolution.

Several inhomogeneities of the expected stress-energy
tensor are plotted in Figs. (1-3). Energy is typically
spread out by t ∼ 10/µ for the background (see [5]).
However, we find as a common feature that there is still
a very uneven profile in these inhomogeneities well after
that time, and they take longer to vanish. Also, note that
since the equations are linearized, the overall amplitude
of these inhomogeneities is completely irrelevant.

We discretized the equations using pseudospectral
methods [15] and we chose a background energy density
δ = 0.075µ4. For many more details, see[1].
4. Apparent Horizon. As discussed in [14],the
residual gauge freedom r → r + ξ(t, y), is fixed by
imposing the AH to lie at a constant r, for instance r = 1.

To find the position of the AH, rAH(y), [5] gives

3Σ2 Σ̇− ∂y(e2B F Σ) + 3
2e

2B F 2 ∂rΣ
∣∣∣
r=rAH(y)

= 0 , (11)

where the functions here can be those of the background
(the inhomogeneities make a negligible contribution).
This equation can be solved by finding the root of that
expression. However, it is derived under the assumption
that the AH lie at a constant position r = rAH, instead
of a trajectory r = rAH(y). Otherwise, (11) must be
modified by F → F + ∂yrAH. This is a significant
complication, since the problem becomes an intricate
non-linear differential equation for rAH(y).

Given a time slice t0, (11) gives the correct AH after
performing an iterative procedure to find ξ(t0, y). But
during the time evolution, it is more efficient to demand
the time derivative to vanish,

∂t

(
3Σ2 Σ̇− ∂y(e2B F Σ) + 3

2e
2B F 2 ∂rΣ

)
= 0 . (12)

It can be seen [1] that this constitutes a linear 2nd order
differential equation for ∂tξ, so its time evolution can be
readily computed. But, since we are using the equation
that assumes a constant rAH, this approach introduces
some error in the calculation, which must be corrected by
performing the explicit calculation of ξ(t0, y) occasionally
during the evolution (every 10-20 timesteps).

-0.50

-0.25

0

0.25

0.50

µt

µy

FIG. 3: Inhomogeneity on the longitudinal energy flux, δSy,
for k = 0.5, as a function of longitudinal coord. y and time t.

D. Fernandez, 1407.5628
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Hybrid approach

Complete simulation of a central heavy ion collision (LHC).
Combination of AdS/CFT in the pre-equilibrium stage with hydrodynamics in
the equilibrium stage and kinetic theory in the free streaming stage.

CHAPTER 4. THERMALISATION WITH RADIAL FLOW 79
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W. van der Schee, P. Romatschke, S. Pratt, 1307.2539
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Plan of the talk

Second part: Holographic Entanglement Entropy

Entanglement entropy

The Ryu-Takayanagi proposal: entanglement entropy from
extremal surfaces

Geodesics on time dependent backgrounds: a glance behind
the horizon?
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Entanglement entropy

Definition:

- Divide a system into two parts A, B
- Reduced density matrix: ρA = TrBρ
- Entanglement entropy: SA = −TrAρAlnρA

A
B

Properties:

Measure for how much a quantum state is entangled.
Entropy for observer only accessible to A: measure for quantum information.
Entanglement entropy is proportional to the degrees of freedom.
Can be a quantum order parameter in condensed matter systems.

Computation in QFTs:

In 2d-CFTs it can be done analytically (replica method).
Universal scaling in 2d-CFTs: SA = c

3 ln
l
a

In higher dimensions there is in general no analytic way - it would be nice to
have a simpler method!
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Holographic entanglement entropy

In QFT with a holographic dual the entanglement entropy can be
computed from extremal surfaces in the gravity theory.

Ryu-Takayanagi proposal: SA = OA(t)
4GN

y

xi

z

∂AdSd

AdSd
t = const.

geodesic
of length L(R, t)

extr. surface
of area OA(t)

AR

S. Ryu, T. Takayanagi, hep-th/0603001
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Questions we want to address

Is entanglement entropy a good measure for entropy production in HICs?
The plan:

Implement a holographic thermalization model. (done - at least the simplest)
Compute extremal surfaces. (almost there, numerics . . . )
Compare these results to particle production in HICs. (no idea yet . . . )

Is it possible to extract information from behind a BH horizon?
Why we think it works:

In non-stationary BH geometries, such as the homogeneous isotropization
model, geodesics can reach behind the horizon. (as I will show you . . . )
The Ryu-Takayanagi proposal relates length of these geodesics to the
entanglement entropy of a region in the boundary theory.

The plan:

Compute geometry behind the horizon. (works in our simple model)
Compute extremal surfaces reaching behind the horizon. (works already for
geodesics, as I will show you . . . )
Use entanglement entropy to extract physical information from behind the
horizon. (no idea yet . . . )
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Spacelike geodesics anchored to the boundary of the
anisotropic AdS5 geometry

Geodesic equation as two-point boundary value problem (2PBVP):

Ẍµ(τ) + ΓµαβẊ
α(τ)Ẋ β(τ) = 0, BCs : Xµ(±1) =

(
V (±1)
Z(±1)
X (±1)

)
=

(
t0
0

±L/2

)
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Ẍµ(τ) + ΓµαβẊ
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Summary & Outlook

Summary

Black hole physics (GR) can be used to study non-equilibrium
dynamics of strongly coupled gauge theories.

Ryu-Takayanagi proposal allows to compute entanglement
entropy from extremal surfaces.

In time dependent black hole geometries geodesics can reach
behind the black hole horizon. This might allows to extract
information from behind the horizon.

Outlook

We want to find out if entanglement entropy is a good
measure for entropy production in HICs.

Our ambitious aim is to use entanglement entropy to extract
information form behind a black hole horizon.
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