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Plan of the talk

First part: Holographic Thermalization

m Pre-equilibrium dynamics in relativistic heavy ion collisions

m The AdS/CFT approach: thermalization = black hole formation

m Numerical relativity on AdS: the Chesler-Yaffe method

m Holographic toy models: homogeneous isotropization, shock waves, . ..

Second part: Holographic Entanglement Entropy
m Entanglement entropy
m The Ryu-Takayanagi proposal: entanglement entropy from extremal surfaces

m Geodesics on time dependent backgrounds: a glance behind the horizon?

Summary and Outlook
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Relativistic Heavy-lon Collisions
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Pre-equilibrium dynamics in HICs

thermalization (hydronization) = equilibration to hydrodynamic regime
After the thermalization time the EMT is well described by hydrodynamics.

In principle we know the theory which describes the pre-equilibrium phase:
QCD

However we can not solve QCD in this phase:

m Perturbative QCD is not valid due to strong coupling.
m Time dependent processes are problematic for lattice QCD.

Alternative approach:

m Study the dynamics of a toy model for QCD: strongly coupled ' = 4
supersymmetric Yang-Mills (SYM) theory

m Unfortunately we also can not (directly) solve N' =4 SYM.

m However the AdS/CFT correspondence maps N'= 4 SYM to classical
gravity.

m General relativity we can do very well!
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Holographic principle and AdS/CFT correspondence

m Holographic Principle [‘t Hooft 93, Susskind 94]:
A theory of (quantum) gravity in n dimensions has an
equivalent description in terms of a theory without gravity in
n — 1 dimensions.

m AdS/CFT correspondence |Valdacena 97]:
N = 4 supersymmetric SU(N.) Yang-Mills theory (SYM) is
equivalent to type IIB string theory on asympt. AdSs x S°.

m We consider a certain limit of AdS/CFT:

Strongly coupled, large N. NV = 4 SYM theory is equivalent
to classical gravity on AdSs.
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Holographic thermalization

thermalization = black hole formation

m AdS/CFT translates the physics of thermalization/equilibration on the field
theory side to the formation of a black hole on AdS.

m Temperature and entropy of the black hole translate to temperature and
entropy of the field theory.

m AdS/CFT relates the EMT T, of the field theory to the metric g, of the AdS
black hole.
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Numerical relativity on AdS: the Chesler-Yaffe method

The aim is to solve the gravitational initial value problem (+BC'’s) on AdS to get
the metric g,

AdS-BH t
A

Characteristic formulation:

ds? = dt[—Adt + Bdr + 2F;dx'] + X2h;;dx’ dx/

m This special parametrization of AdS decouples the
Einstein egs. into a nested set of linear ODEs.

m ODEs are solved with standard numerical
techniques. (Chebychev spectral method, . ..)

Out-of-equilibrium configurations:

m IC’s: anisotropy, shock waves, ...

m BC’s: flat boundary, boundary with time dep.
curvature, . ..

P. Chesler, L. Yaffe, 1309.1439 r=0 r=oo

Pure AdS
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Homogeneous isotropization: beginner problem

m Spatial homogeneous, rotational symmetric in transverse plane, but allows for
time dependent pressure anisotropy.

m Line element: ds? = 2drdt — A(r, t)dt? + £(r, t)? (6*23(”t)dx‘f + eBrt)dx2)

m Energy momentum tensor: (T,,) = %diag[e, Py(t), PL(t), PL(t)]
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Including longitudinal dynamics: hom. shock waves

m Lorentz contracted ions are modeled as is homogeneous and infinitely extended
energy distribution in the transverse plane with a Gaussian profile in the
longitudinal direction.

m Gaussians move at the speed of light in the longitudinal direction.

m Hydrodynamics applies even when the initial Gauians are still in contact and
the pressure anisotropy is large.
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P. Chesler, L. Yaffe, 1011.3562
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Homogeneous shock waves: dynamical cross over

m Dynamical cross over: wide and narrow shocks give qualitatively different
results

m Wide shocks (full stopping): Au lons at RHIC, Lorentz contraction ~ 100.

m Narrow shocks (transparent): Pb lons at LHC, Lorentz contraction ~ 1000.

Elpt

J. Casalderrey-Solana, M. Heller, D. Mateos, W. van der Schee, 1305.4919
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Including transverse dynamics: inhom. shock waves

m The aim is to bring simulation closer to experiment.

m To account for elliptic flow in non-central collisions one needs dynamics in the
transverse plane.

m In this simulation linearized perturbations are modelled on top of the fully
non-linear, homgenous solution.

D. Fernandez, 1407.5628
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Hybrid approach

m Complete simulation of a central heavy ion collision (LHC).
m Combination of AdS/CFT in the pre-equilibrium stage with hydrodynamics in
the equilibrium stage and kinetic theory in the free streaming stage.
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Plan of the talk

Second part: Holographic Entanglement Entropy
m Entanglement entropy
m The Ryu-Takayanagi proposal: entanglement entropy from
extremal surfaces
m Geodesics on time dependent backgrounds: a glance behind
the horizon?
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Entangle

Definition:
- Divide a system into two parts A, B

- Reduced density matrix: pa = Trgp
- Entanglement entropy: Sp = —Trapalnpa

Properties:

m Measure for how much a quantum state is entangled.

m Entropy for observer only accessible to A: measure for quantum information.
m Entanglement entropy is proportional to the degrees of freedom.

m Can be a quantum order parameter in condensed matter systems.

Computation in QFTs:
m In 2d-CFTs it can be done analytically (replica method).
m Universal scaling in 2d-CFTs: Sp = %lné
m In higher dimensions there is in general no analytic way - it would be nice to
have a simpler method!
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Holographic entanglement entropy

In QFT with a holographic dual the entanglement entropy can be
computed from extremal surfaces in the gravity theory.

Ryu-Takayanagi proposal: Sa = %&(I:)

- 0AdSq

o

[ y
z AdS4
t = const.

geodesic extr. surface
of length LgR, t) of area Ox(t)
S. Ryu, T. Takayanagi, hep-th/0603001
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Questions we want to address

Is entanglement entropy a good measure for entropy production in HICs?
The plan:
m Implement a holographic thermalization model. (done - at least the simplest)
m Compute extremal surfaces. (almost there, numerics .. .)
m Compare these results to particle production in HICs. (no idea vyet ...)

Is it possible to extract information from behind a BH horizon?
Why we think it works:
® In non-stationary BH geometries, such as the homogeneous isotropization
model, geodesics can reach behind the horizon. (as | will show you ...)
m The Ryu-Takayanagi proposal relates length of these geodesics to the
entanglement entropy of a region in the boundary theory.
The plan:
m Compute geometry behind the horizon. (works in our simple model)
m Compute extremal surfaces reaching behind the horizon. (works already for
geodesics, as | will show you ...)
m Use entanglement entropy to extract physical information from behind the
horizon. (no idea yet ...)
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Spacelike geodesics anchored to the boundary of the

anisotropic AdSs geometry

Geodesic equation as two-point boundary value problem (2PBVP):

. ) . V(%1) to
Xi(r) 4 Th X (1)X (1) =0, BCs: X!(+1) = <Z(il)> = ( 0 )
X(£1) +L/2
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Summary & Outlook

Summary

m Black hole physics (GR) can be used to study non-equilibrium
dynamics of strongly coupled gauge theories.

m Ryu-Takayanagi proposal allows to compute entanglement
entropy from extremal surfaces.

m In time dependent black hole geometries geodesics can reach
behind the black hole horizon. This might allows to extract
information from behind the horizon.

Outlook

m We want to find out if entanglement entropy is a good
measure for entropy production in HICs.

m Our ambitious aim is to use entanglement entropy to extract
information form behind a black hole horizon.
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