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Introduction

= Motivation
- Quark-gluon plasma (QGP) produced at RHIC and LHC behaves like a
strongly coupled liquid.
- Thermalization happens on a small time scale (< 1fm/c = 100ns).
- Question: What are the mechanisms responsible for the fast
thermalization?

m Complications
- Due to strong coupling perturbative QCD is not applicable.
- Time dependent processes are problematic for lattice QCD.

m AdS/CFT approach
- Employ AdS/CFT to study dynamics of N' =4 SYM theory.
- Dynamics of 4-dim. QFT is mapped to class. gravity on 5-dim. AdS.
- QFT observables we use to study thermalization are the energy
momentum tensor, two-point functions and entanglement entropy.
- On the gravity side these observables can be computed from the
metric, from geodesics and from extremal surfaces.
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m Anti-de Sitter spacetime /l\ t
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Anti-de Sitter spacetime and the AdS/CFT correspondence

Black Hole

Gravity (ry < Th)
Theory
m Anti-de Sitter spacetime t

- Solution of vacuum Einstein equations
with negative A.
- Boundary at r = 0.

Gauge

™ Theory

m Asymptotic anti-de Sitter spacetimes
- "look” near r = oo like AdS.
- e.g.: AdS-black hole om===== .

- BH-temperature Ty oc horizon radius ry. Jr=o00
R (0AdS)

m AdS/CFT correspondence
Classical gravity on AdSs <+ strongly-coupled N' =4 SYM on OAdSs

m At finite temperature:
AdSs-BH < strongly-coupled N'=4 SYM at T = Ty.

m Black hole formation in AdS <« thermalization in gauge theory.
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Thermalization of N/ = 4 SYM Plasma

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

T;W X diag [67 PH(t)’ PL(I'), PL(t)] thermalization P”
o > t > teherm .
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rmalization of N =

Energy momentum tensor (EMT) of the anisotropic SYM-plasma:

v X diag [67 PH(t)’ PL(I'), PL(t)] thermalization P”
N——r

Z P P
0(2) Y L)L

t > tiherm

AdS/CFT relates T, to the metric of an anisotropic AdS-BH.
Line element in Eddington-Finkelstein coordinates:

ds? = 2drdt — A(r, t)dt® + (r, t)? (e 2B(ndx? 4 B dz? )
[N .,
0(2)
Chesler-Yaffe method

m In characteristic formulation (null-slicing) the Einstein eq. decouple to a nested
system of linear ODEs.

m Use spectral method to solve BVP on each null-slice.
m Evolve with Runge-Kutta method between null-slices.
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Numerical Solution: Anisotropy Function B(u,t)
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EMT of the anisotropic N' = 4 SYM plasma
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Two-Point Functions and Entanglement Entropy

Various non-local observables in the boundary theory have holographic prescriptions
in terms of extremal surfaces:
m Two-point functions: G(R, t) oc e ™MHRt)

Az (t)
4Gy

dAdS, /

Xi
y
z AdSy
t = const.

geodesic extr. surface
of length L(R,t) of area Ax(t

m Entanglement entropy: Sy =
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Spacelike geodesics anchored to the boundary of the

anisotropic AdSs geometry

Geodesic equation as two-point boundary value problem (2PBVP):

. ) . V(%1) to
Xi(r) 4 Th X (1)X (1) =0, BCs: X!(+1) = <Z(il)> = ( 0 )
X(£1) +L/2
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Conclusion

m Black hole physics (GR) can be used to study non-equilibrium
dynamics of strongly coupled gauge theories (QFT).

m Within AdS/CFT various non-local observables can be
computed from geodesics and extremal surfaces.

® In time dependent backgrounds there is information from
behind the black hole horizon encoded in the two point
functions.

Outlook

m Next we want to study entanglement entropy using extremal
surfaces.

m "Numerical holography” is a rather young discipline - there is
still much to discover!
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