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Plan of the Lectures

Day 1

§ Lecture 1: Introduction to AdS/CFT

§ Tutorial 1: Putting Einstein Equations on the Computer

Day 2

§ Lecture 2: Holographic Heavy Ion Collisions

§ Tutorial 2: Time Evolution of a N “ 4 SYM Plasma

Day 3

§ Lecture+Tutorial 3: Entanglement Entropy
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Useful References

Introduction to AdS/CFT and Applications:

§ Introductory book on AdS/CFT: Ammon, Erdmenger, Cambridge University
Press (2015)

§ Condensed version in TASI lectures 2017 [1807.09872] by Erdmenger.

§ Book on AdS/CFT applied to Heavy Ion Collisions: Casalderray-Solana, Liu,
Mateos, Rajagopal, Wiedemann, Cambridge University Press (2014), preprint:
[1101.0618].

§ Book on AdS/CMT: Zaanen, Sun, Liu, Schalm, Cambridge University Press
(2016)

§ Book on holographic entanglement entropy: Rangamani, Takayanagi, Lecture
notes in Physics, Springer (2017), perprint: [1609.01287]

Numerics:

§ Review on Characteristic Method for Numerical Holography:
Chesler, Yaffe [1309.1439]

§ Book on Spectral Methods: Boyd, Dover Publications (2001)

Code:

§ Book by Trefethen has MATLAB code examples

§ Homepage by van der Schee has instructive Mathematica codes.

§ These slides and Mathematica files used in the tutorials on
http://christianecker.com/.
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https://people.maths.ox.ac.uk/trefethen/spectral.html
https://sites.google.com/site/wilkevanderschee/ads-numerics
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Outline of Lecture 1

1. The AdS/CFT Correspondence

2. Computing Observables in AdS/CFT

3. Numerical Relativity on AdS
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1. The AdS/CFT Correspondence
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What makes AdS/CFT special?

§ One of the major theoretical developments in the last twenty years.

§ It relates conformal field theories (CFTs) to higher dimensional gravity in
Anti de Sitter (AdS) space.

§ It is a strong-weak duality: if field theory is strongly coupled the gravity
theory is weakly coupled and vice versa.

§ Provides a framework for calculating observables in strongly coupled
gauge theories which are generically hard to solve.

§ This is for instance relevant for QGP in heavy ion collisions, strongly
correlated condensed matter systems, neutron stars, . . .

§ Provides unexpected links between previously unrelated areas of physics,
e.g.: General Relativity and Quantum Information
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AdS/CFT Correspondence

Type IIB string theory on AdS5ˆS5

=
SU(N) N “ 4 Super Yang-Mills (SYM) theory on M4

[Maldacena [hep-th/9711200]]

§ The correspondence relates the parameters of the two theories

g 2
YM “ 2πgs , λ “ 2g 2

YMN “ L4
{`4

s .

§ The correspondence is conjectured to hold for any value of the ’t Hooft
coupling λ “ 2g 2

YMN and rank of gauge group N.

§ Supergravity limit: Assuming point like strings (`s Ñ 0) and small
coupling (gs ! 1) reduces the string theory side to classical supergravity.

§ This corresponds to the N Ñ8 and λÑ8 limit on the field theory side

`4
s “

L4

λ

λ large
ÝÝÝÝÑ 0 , gs “

λ

2N
NÑ8
ÝÝÝÑ 0 .

ñ Observables in a strongly coupled field theory (hard) can be obtained
from a classical gravity calculation (easy).
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The Field Theory Side: N “ 4 SYM

§ N “ 4 SYM is a SUSY field theory with a gauge field, scalars and
fermions in the adjoint representation of the gauge group.

§ The β function vanishes exactly to all orders in perturbation theory
ñ it is superconformal1, hence no running coupling, no confinement and
no chiral symmetry breaking.

§ This is quite different from QCD which is has no SUSY, has fermions
(quarks) in the fundamental representation, non-trivial β function,
confinement and a chirally broken vacuum.

§ However, at T ą Tc « 170MeV some of the qualitative differences
become unimportant and many authors used it as toymodel for the
quark-gluon plasma produced in heavy ion collisions.

§ Finite T explicitly breaks SUSY.

§ Above Tc QCD is deconfined and the chiral condensate melts away.

1N “ 4 is the maximum number of SUSY generators in D=4 for spin ď 1, i.e.
without gravity, which makes the theory maximally supersymmetric.
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The Gravity Side: AdS Spacetime

§ AdSd`1 is a maximally symmetric solution of the Einstein equations with
negative cosmological constant Λ and negative curvature radius L.

Rµν ´
1

2
Rgµν ` Λgµν “ 0 , Λ “ ´

dpd ´ 1q

2L2

§ This is different form our universe which is well described by de Sitter
space with small positive cosmological constant Λ “ 1.1056ˆ 10´52 m´2.

§ In Poincaré patch2 coordinates the line element of AdS reads

ds2
“

L2

r 2
dr 2

`
r 2

L2
p´dt2

` d~x2
q

looooooomooooooon

boundary metric

§ AdS space has a timelike boundary at r “ 8, which for the Poincaré patch
is Minkowski space. In the AdS/CFT context this is where the CFT lives.

§ Asymptotic AdS spacetimes, like the AdS black brane, look only at r Ñ8

like AdS, but differ in the interior, e.g. by the presence of a BH horizon.

2The Poincaré patch covers only part of global AdS which has a compact boundary.
12/67



The Holographic Dictonary

§ Every field on the gravity side corresponds is dual to a gauge invariant
operator on the field theory side.

Gravity Side Gauge Theory Side

metric gµν Tµν stress tensor
scalar field φ O scalar operator

gauge field Aµ Jµ global sym. current
fermion field ψ Oψ fermionic operator

. . . . . .

§ Operator O of dimension ∆ sourced by J “ φ0 dual to scalar with mass m

φpr , t, ~xq „ Jpt, ~xqr´d`∆
`xOpt, ~xqyr´∆ , ∆ “ d

2
`

b

d2

4
`m2L2 , m2L2

ě ´ d2

4

§ Geometry in the bulk corresponds to a state in the field theory:
e.g.: black hole geometries correspond to finite temperature states with T
equal the Hawking temperature of the BH.

§ Holographic thermalization: The dynamical process of BH formation
gets mapped to the relaxation and thermalization of excited states in the
field theory.

13/67



Computing Observables

§ Expectation values of correlators of gauge invariant operators in the CFT
follow from variations of the renormalized gravity action Srenrφs w.r.t. the
boundary values φ0 of the dual fields φ

xOpx1q . . .OpxnqyCFT “
δnSrenrφs

δφ0px1q . . . δφ0pxnq

ˇ

ˇ

ˇ

φ0“0
.

§ For instance the holographic stress tensor follows from

xTµνpxqy “ ´
2

?
gp0q

δSren

δgµν
p0q pxq

.

§ Let’s do this for a simple gravity action without bulk matter

S “ ´
1

16πGN

ż

dd`1x
?
g

ˆ

R `
dpd ´ 1q

L2

˙

´
1

8πGN

ż

ddx
?
γK .

14/67



Fefferman-Graham Expansion

§ The bulk metric GMN can be expanded in the radial coordinate ρ

ds2
“ GMNdx

MdxN
“ L2

ˆ

dρ2

4ρ2
`

1

ρ
gµνpρ, xqdx

µdxν
˙

§ Fefferman-Graham theorem: If GMN satisfies the Einstein equations,
then gµν has the following expansion

gµνpρ, xq “ gp0qµνpxq`ρgp2qµνpxq`. . .`ρ
d{2

`

logpρqhpdqµνpxq ` gpdqµνpxq
˘

`. . .

§ The expansion coefficients are obtained by solving the Einstein equations
order by in ρ, where the leading ones only depend on the boundary metric

gp2qµνpxq “
L

d ´ 2

ˆ

Rp0qµν ´
1

2pd ´ 1q
Rp0qgp0qµν

˙

§ Important remarks:
Logarithms are related to conformal anomalies and only present for even d .
Coefficients of order ě d can only be extracted from full bulk solution.
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Holographic Renormalization

§ Putting the asymptotic expansion into the action and evaluating it at
cutoff ε ! 1 gives

Sε “ ´
1

16πGN

ż

ddx
?
gp0q

´

ap0qε
´d{2

` ap2qε
´d{2`1

` . . .´ log apdqε
¯

` Sfinite

§ To renormalize the action we have to add appropriate counter terms3

Sren “ lim
εÑ0
pSε ` Sctq

§ Varying the renormalized action w.r.t. the boundary metric gives the
stress tensor

xTµνpxqy “ ´
2

?
gp0q

δSren

δgµν
p0q pxq

§ For d “ 4 this gives the following expression for the holographic energy
momentum tensor [de Haro, Skenderis, Solodukhin [hep-th/0002230]]

xTµνy “
4

16πGN

ˆ

gp4qµν `
1

8

´

Trg2
p2q ´ pTrgp2qq

2
¯

gp0qµν ´
1

2
pg2
p2qqµν `

1

4
gp2qµνTrgp2q

˙

3The counterterms are usually ambiguous, and a specific choices for Sct correspond
to specific renormalization schemes.
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2. Numerical Relativity on AdS
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Characteristic Formulation

§ AdS is not globally hyperbolic, i.e. has no Cauchy
slice: Need ICs+BCs to obtain well defined initial
value problem.

§ Light-like slicing results in characteristic
formulation of GR, realized by generalized
Eddington-Finkelstein (EF) coordinates

ds2
“ 2dvdr `

r 2

L2
gµνpr , x

µ
qdxµdxν .

§ EF coordinates are regular across black hole
horizons.

§ Residual gauge freedom can be used to fix radial
position of the apparent horizon

r Ñ r̄ ” r ` ξpxµq.

BC's

IC's

Black
Hole

AdS-BH

Pure AdS

Numerical
Relativity

t

r=0 r=1
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Caustics

§ Penrose focusing theorem: ”Matter focuses light.”

§ Coordinate lines are light-like geodesics which can form caustics.
Caustics are coordinate singularities destroying the coordinate system.

§ Increase regulator energy density to hide caustics behind horizon.
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Anisotropic AdS5 Black Brane

§ Simplest non-trivial case: homgeneous, anisotropic AdS5 black brane.

ds2
“ ´Apr , vqdv 2

` 2dvdr ` S2
pr , vq

´

e´2Bpr,vqdy 2
` eBpr,vqd~x2

¯

§ BCs: Minkowski boundary ds2
bdry| “ ´dt

2
` d~x2

§ ICs: Warp factor Bpr , v0q “
6.6
r4 e

´p 1
r
´ 1

4 q
2

, Energy a4 “ ´1 Ñ Teq “
1
π

§ Models isotropization of an intially anisotropic N “ 4 SYM plasma.
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Characteristic Bulk Equations

§ For this simple example we need to solve the 5D Einstein equations

Rµν ´
1

2
Rgµν ` Λgµν “ 0 s.t. ds2

|rÑ8 “ r 2
p´dt2

` d~x2
q .

§ Derivatives along ingoing (prime) and outgoing (dot) null geodesics

h1 ” Brh , 9h ” Bvh `
1
2
ABrh .

§ Einstein Equations decouple into a nested set of ODEs

§ Use constraint (1) to prepare ICs, constraint (5) to monitor accuracy.
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Field Redefinitions

§ Use inverse radial coordinate z “ 1
r

where the AdS boundary is at z “ 0.

§ Finite fields are obtained by factoring out the analytically known divergent
near boundary part

Apz , vq Ñ
1

z2
`zÃpz , vq , Spz , vq Ñ

1

z
`z2S̃pz , vq , Bpz , vq Ñ z3B̃pz , vq .

§ Redefinitions are tailored to read off the normalizable modes

b4pvq “ B̃ 1p0, vq , a4 “ Ã1p0, vq

§ On each slice we have to solve boundary value problems (BVP) with BCs
fixed by the near boundary expansion, e.g. eq.(4) takes the form

Ã2 `
4

z
Ã1 `

2

z2
Ã “ jA , s.t. Ãp0, v0q “ 0 , Ã1p0, v0q “ a4

§ In Lecture 2 we will learn how to solve such BVPs efficiently using
spectral methods.
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Time Stepping

§ Simplest way: 1st order Euler method

yi pt `∆tq “ yi ptq `∆t ¨ y 1
i ptq.

§ More accurate: 4th order Adams-Bashforth

yi pt`4∆tq “ yi pt`3∆tq`
∆t

24

`

55y 1i pt ` 3∆tq ´ 59y 1i pt ` 2∆tq ` 37y 1i pt `∆tq ´ 9y 1i ptq
˘

.

§ Requires derivatives at three previous time steps Ñ have to use
lower order method for the first steps (lower accuracy).
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Near Boundary Analysis

§ Near r Ñ8 the Einstein equations have the power series solution

Apr , vq “ r 2
`

a4pvq

r 2
`

a14pvq

2r 3
`Opr´4

q ,

Spr , vq “ r ´
a14pvq

20r 4
´

b4pvq
2

7r 7
`Opr´8

q ,

Bpr , vq “
b4pvq

r 4
`

b14pvq

r 5
`Opr´6

q ,

§ a0pvq, s0pvq, b0pvq are fixed by BCs: ds2
|rÑ8 “ r 2

p´dt2
` d~x2

q

§ b4pvq needs to be extracted form the numerical solution.

§ a4pvq and b4pvq contain information on the field theory stress tensor

xTµν
y “

N2
c

2π2
diag

“

E , P‖ptq, PKptq, PKptq
‰

E “ ´3

4
a4 , P‖ptq “ ´

1

4
a4 ´ 2b4ptq , PKptq “ ´

1

4
a4 ` b4ptq

§ Energy conservation at 5th order: a14pvq “ 0 Ñ a4pvq “ const.
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Summary of Lecture 1

§ The AdS/CFT correspondence relates strongly coupled N “ 4 SYM
theory to classical gravity on AdS.

§ The basic method to compute observables, e.g. the stress tensor, in
AdS/CFT is holographic renormalization. This requires to solve the
Einstein equations perturbatively close to the boundary.

§ The characteristic formulation reduces the Einstein equations (PDEs) to a
nested set of ODEs. This is drastically simplifies the numerics.

§ In the Tutorial 1 this afternoon we will use Mathematica to bring the
Einstein equations into characteristic form, perform the near boundary
analysis and derive the stress tensor.
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Outline of Lecture 2

1. Spectral Methods

2. Homogeneous Isotropization

3. Boost Invariant Hydrodynamization

4. Shockwave Collisions
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Recap: Anisotropic AdS5 Black Brane

§ Simplest non-trivial case: homgeneous, anisotropic AdS5 black brane.

ds2
“ ´Apr , vqdv 2

` 2dvdr ` S2
pr , vq

´

e´2Bpr,vqdy 2
` eBpr,vqd~x2

¯

§ BCs: Minkowski boundary ds2
bdry| “ ´dt

2
` d~x2

§ ICs: Warp factor Bpr , v0q “
6.6
r4 e

´p 1
r
´ 1

4 q
2

, Energy a4 “ ´1 Ñ Teq “
1
π

§ Models isotropization of an intially anisotropic N “ 4 SYM plasma.
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Recap: Anisotropic AdS5 Black Brane

§ We have to solve the 5D Einstein equations

§ After using inverse radial coordinate z “ 1
r

and factoring out the
analytically known divergent near boundary part, we are left over with a
set of boundary value problems (BVP) on each slice, e.g. (4)

Ã2 `
4

z
Ã1 `

2

z2
Ã “ jA , s.t. Ãp0, v0q “ 0 , Ã1p0, v0q “ a4

§ To evolve between slices we use 4th order Adams-Bashforth

yi pt`4∆tq “ yi pt`3∆tq`
∆t

24

`

55y 1i pt ` 3∆tq ´ 59y 1i pt ` 2∆tq ` 37y 1i pt `∆tq ´ 9y 1i ptq
˘

.
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Spectral Methods

§ Expand in terms of Chebyshev polynomials

ypxq «
N´1
ÿ

i“0

ciTi pxq , Ti pcospxqq “ cospixq

§ Highly efficient because of spectral convergence: error„ p∆xqN

§ Spectral (Chebyshev) grid

xi “ cospiπ{Nq , i “ 0, . . . ,N

§ Differentiation and integration on the spectral grid by matrix
multiplication

yi ” ypxi q , y 1i “ Dijyj , y2i “ D2
ijyj ,

ż

dxyi “ D´1
ij yj

§ Spectral matrix, see book by Boyd 2001

Dij “
ci

cj

p´1qi`j

xi ´ xj
, c0 “ cN “ 2, ci “ 1 , i ‰ j , i , j “ 0, . . . ,N

D00 “
2N2

` 1

6
, DNN “ ´

2N2
` 1

6
, Djj “ ´

xj

2p1´ x2
j q
, j “ 1, . . . ,N´1
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Boundary Value Problem (I)

§ Consider the simple boundary value problem

y2pxq ` y 1pxq ´ 20xypxq “ 0 , BC : yp´1q “ 5 , yp1q “ ´1

§ It has a (not so simple) analytic solution

ypxq “

e
1
2
p´x´1q

˜˜

eAi

˜

´ 79

8 3?252{3

¸

` 5Ai

˜

81

8 3?252{3

¸¸

Bi

˜

80x`1

8 3?252{3

¸

´

˜

eBi

˜

´ 79

8 3?252{3

¸

` 5Bi

˜

81

8 3?252{3

¸¸

Ai

˜

80x`1

8 3?252{3

¸¸

Ai

˜

81

8 3?252{3

¸

Bi

˜

´ 79

8 3?252{3

¸

´ Ai

˜

´ 79

8 3?252{3

¸

Bi

˜

81

8 3?252{3

¸

-1.0 -0.5 0.5 1.0
x

-8

-6

-4

-2

2

4

y(x)
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Boundary Value Problem (II)

§ Express the differential operator matrix and the source vector on the grid

L “ B2
x`Bx´20x Ñ Lij “ D2

ij`Dij´20diagpxqij , S “ 0 Ñ Si “ p0, 0, . . . , 0q

§ Implement BCs: yp´1q “ y1 “ 5 , yp1q “ yN “ ´1
¨

˚

˚

˚

˚

˚

˝

1 0 0 . . . 0
L21 L22 L23 . . . L2N

...
...

...
. . .

...
LN´1,1 LN´1,2 LN´1,3 . . . LN´1,N

0 0 0 . . . 1

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

y1

y2

...
yN´1

yN

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

5
0
...
0
´1

˛

‹

‹

‹

‹

‹

‚

§ The solution vector yi is obtained by simple matrix inversion: yi “ L´1
ij Sj

-1.0 -0.5 0.5 1.0
x

-8

-6

-4

-2

2

4

y(x)

15 20 25 30 35 40
N

10-27

10-22

10-17

10-12

10-7

0.01

max[Δy]
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2. Holography and Heavy Ion Collisions
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Heavy Ion Collisions

§ Relativistic collisison of heavy ions (Au, Pb) at RHIC and LHC produce a
deconfined state of quarks and gluons called quark-gluon plasma.

33/67



Holography for HICs

§ The plasma is strongly coupled in the early stages of the collisions, which
makes first principle calcualtions in perturbative QCD intractable.

§ Experiments are only well described by viscouse hydrodynamics when
assuming small η{s and early onset (« 1fm{c) of hydro.

§ Holography predicts such small viscosity η{s “ 1
4π

for N “ 4 SYM4.

[Policastro, Son, Starinets [hep-th/0104066]]

§ Holography naturally realizes fast thermalization/hydrodynamization.

§ Lattice calculations in thermal equilibrium suggest small influence of N.

[Luzum, Romatschke [0804.4015]]
[Panero [0907.3719]]

4This result is universal for all theories with Einstein gravity dual.
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Homogeneous Isotropization of N “ 4 SYM Plasma

§ The QGP in HICs is initially highly anisotropic (PK ‰ P‖).

§ The anisotropic AdS5 black brane introduced in Lecture 1 models the
isotropization of a strongly coupled non-Abelian plasma.

xTµν
y “

N2
c

2π2
diag

“

E , P‖ptq, PKptq, PKptq
‰

ℰ  ⟂

0.5 1.0 1.5 2.0
Tt

-4

-3

-2

-1

1

2
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Quasinormal Ring Down

§ The late time dynamics of the plasma is described by quasinormal modes
of the black brane.

[Starinets hep-th/0207133]

∆P9Re
ÿ

n

cne
´λnt ,

λ1

πT
“ 2.7467`3.1195i ,

λ2

πT
“ 4.7636`5.1695i , . . .

§ Accuracy with only 30 grid points is good enough to extract lowest QNM.

2 4 6 8 10
t

10
-10

10
-7

10
-4

10
-1

Abs[ δ(t)]

1 2 3 4 5
t10

-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

max[constraint]
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Boost Invariant Hydrodynamization

§ The previous model was to simple to study the approach to hydro.

§ The easiest way to realize a non-trivial flow is to use proper time and
rapidity coordinates and assume boost invariance (=y -independence)

t “ τ cosh y , x‖ “ τ sinh y , ds2
bdry “ ´dτ

2
` τ 2dy 2

` d~x2
K

ds2
“ ´Apr , τqdτ 2

` 2dτdr ` Spr , τq2pe´2Bpr,τqdy 2
` eBpr,τqd~x2

Kq .

§ Energy momentum tensor is diagonal

Tµν “
N2

c

2π2
diag

“

Epτq,P‖pτq,PKpτq,PKpτq
‰

§ Conditions: ∇µT
µν
“ 0 and Tµ

µ “ 0 imply

P‖ “ ´E ´ τ 9E , PK “ E ` 1

2
τ 9E

§ Evolution of the system is captured by a single function Epτq.
§ Strict for an infinite energy collision of infinitely large nuclei.

[Bjorken Phys. Rev. D 27, 140 (1983)]
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Effective Temperature

§ Late time: 2nd order hydrodynamic expansion

Epτq “ 3π4Λ4

4pΛτq4{3

ˆ

1´
2c1

pΛτq2{3
`

c2

pΛτq4{3
` . . .

˙

,

PKpτq “
π4Λ4

4pΛτq4{3

ˆ

1´
c2

p3Λτq4{3
` . . .

˙

,

P‖pτq “
π4Λ4

4pΛτq4{3

ˆ

1´
2c1

pΛτq2{3
`

5c2

p3Λτq4{3
` . . .

˙

.

[Baier, Romatschke, Son, Starinets, Stephanov [0712.2451]]

§ Leading order gives the Bjorken solution E0pτq “
3π4Λ4

4pΛτq4{3
of ideal hydro.

§ Viscous correction coefficients can be computed in holography

N “ 4 SYM : c1 “
1

3π
, c2 “

2` ln 2

18π2
.

§ The energy scale Λ is the only trace of initial conditions.
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Pressure Anisotropy

§ Energy density defines local effective temperature

Epτq “ 3

4
π4T pτq4 .

§ Introduce the dimensionless time variable w “ τT pτq.

§ The pressure anisotropy is defined as

Apwq “
P‖pwq ´ PKpwq

Ppwq ,

where P “ E{3 is the equilibrium pressure.

§ Since A “ 0 for equilibrium, the pressure anisotropy is a measure of the
distance from local equilibrium.
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Universality

§ Universal approach to equilibrium: initial state information is dissipated
exponentially at early times.

Thermalization ‰ Hydrodynamization

Apw0q “
P‖´PK

P „ 1.3 at w0 „ 0.7

0.0 0.5 1.0 1.5 2.0

-2

0

2

4

6

8

10

12

w


(w

)

[Jankowski, Plewa, Spalinski [1411.1969]]
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Shockwave Collisions in AdS

Collisions of gravitational waves in AdS as toy model for HICs.

ds2
“ ´Apr , v , yqdv 2

`2dvpdr`F pr , v , yqdyq`Σpr , v , yq2pe´2Bpr,v,yqdy 2
`eBpr,v,yqd~x2

q

[Chesler, Yaffe [1011.3562]]

41/67

https://arxiv.org/pdf/1011.3562.pdf


Initial Conditions

§ The pre-collision geometry describing two shocks moving in ˘ỹ -direction
in Fefferman-Graham coordinates pr̃ , t̃, ỹ ,~̃rq can be written down explicitly

ds2
“ r̃ 2ηνµdx̃

µdx̃ν` 1
r̃2

´

dr̃ 2
` hpt̃ ` ỹqpdt̃ ` dỹq2 ` hpt̃ ´ ỹqpdt̃ ´ dỹq2

¯

.

§ The function hpt̃ ˘ ỹq is an arbitrary function usually chosen as Gaussian

hpt̃ ˘ ỹq “
µ3

?
2πω2

e
´
pt̃˘ỹq2

2ω2 .

§ In this gauge the EMT describes two lumps of energy with maximum
overlap at t̃ “ 0

T̃ t̃ t̃
“ T̃ ỹ ỹ

“ hpt̃ ´ ỹq ` hpt̃ ` ỹq , T̃ t̃ ỹ
“ hpt̃ ´ ỹq ´ hpt̃ ` ỹq .

§ For the time evolution these initial conditions need to be (numerically)
transformed to Eddington-Finkelstein gauge.
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Hydrodynamization of Shocks
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Wide vs. Narrow Shocks

Two qualitatively different dynamical regimes:
§ Wide shocks: ”full stopping”, immediate hydrodynamic explosion

after the collision, similar to low energy collisions at RHIC.
§ Narrow shocks: ”transparency”, shocks pass through unperturbed,

delayed plasma formation, similar to high energy collisions at LHC.
[Casalderrey-Solana, Heller, Mateos, van der Schee [1705.01556]]
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Null Energy Condition in Shckwave Collisions

Narrow shock wave collisions can violate the null energy condition (NEC)
[Arnold, Romatschke, van der Schee, [1408.2518]]

Tµνk
µkν ě 0 , @kµk

µ “ 0
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QNEC in Shockwave Collisions

In quantum field theory the quantum null energy condition (QNEC) replaces
the classical NEC.

[Bousso, Fisher, Koeller, Leichenauer, Wall [1509.02542]]

xTµνk
µkνy ě

~
2π
?
h
S2 , @kµk

µ
“ 0

[CE, Grumiller, van der Schee, Stanzer, [1710.09837]] 46/67
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Generalizations

§ Fully localized shocks including longitudinal and transverse
dynamics.

[Chesler, Yaffe [1501.04644]]

§ Conformal symmetry breaking with non-trivial scalar field potential
in the bulk.
[Attems, Casalderrey-Solana, Mateos, Santos-Olivan, Sopuerta, Triana, Zilhao [1604.06439]]

§ Finite coupling corrections using Gauss-Bonnet gravity.
[Grozdanov, van der Schee [1610.08976]]

§ Inclusion of ”quark” chemical potential by adding gauge field in the
bulk.

[Folkestad, Grozdanov, Rajagopal, van der Schee,[1907.13134]]

[Pichture: Chesler, Yaffe [1501.04644]]
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Steady State Formation

§ Thermal contact between strongly coupled quantum critical systems gives
rise to a homogeneous steady state with non-vanishing energy flow.

§ D=2: Steady state is described by Lorentz boosted equilibrium state with
T “

?
TL ˚ TR .

§ Dynamics completely fixed by conformal symmetry: two shock waves with
constant profile moving at the speed of light to cold and warm side.

[Bhaseen, Doyon, Lucas, Schalm [1311.3655]]
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Steady State Formation in AdS5

§ D ą 2: Hydrodynamic solution not unique. Two shocks mathematically
correct solution to ideal hydrodynamics.

§ Problem: shockwave propagating to the warm bath violates (locally) the
second law of thermodynamics.

§ Physical solution: shockwave moving to cold, rarefaction wave moving to
warm.

§ Holography automatically delivers physical solution.

-30 -20 -10 10 20 30
y

1.0

1.5

2.0

ϵ
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Summary of Lecture 2

§ Spectral methods are an efficient tool to numerically solve
differential equations.

§ The late time dynamics of the homogeneous and anisotropic plasma
is described by exponentially damped oscillations (QNMs).

§ Boost invariant model evolves towards universal hydrodynamic
regime.

§ Collisisons of gravitational shocks in AdS as model for HICs.

§ In Tutorial 2 in the afternoon we will learn how to solve BVPs using
spectral methods. Furthermore, we will solve compute the time
evolution and analyze the late time behaviour.

§ Steady state formation with end state has non-trivial energy flow.

§ Recent developments include localized shocks, conformal symmetry
breaking and finite coupling corrections.
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Outline of Lecture 3

1. Entanglement Entropy

2. Holographic Entanglement Entropy

3. Tutorial 3: Shoot & Relax in AdS Space
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1. Entanglement Entropy
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Why is entanglement entropy interesting?

§ Entanglement entropy is a measure for entanglement in quantum systems.

§ A concept that originated in quantum information theory.
[Nielsen, Chuang Cambridge University Press, 2010]

§ It was proposed as a way of understanding black hole entropy.
[Bombelli, Koul, Lee, Sorkin 86, Srednicki [hep-th/9303048]]

§ It provides a measure for dofs in renormalization group flows.
[Casini, Huerta [cond-mat/0610375],[1202.5650]]

§ Order parameter for exotic phase transitions in quantum critical systems.
[Osborne, Nielsen [quant-ph/0202162], Vidal,Latorre, Rico, Kitaev [quant-ph/0211074]]

§ In holography the Ryu-Takayanagi formula relates the area of extremal
surfaces in gravity theory to quantum entanglement.

[Ryu, Takayanagi [hep-th/0603001],[hep-th/0605073]]

SA “
A

4GN

§ Recently used to formulate the quantum null energy condition (QNEC), a
universal energy bound in QFTs.

[Bousso, Fisher, Leichenauer, Wall [1506.02669],
Bousso, Fisher, Koeller, Leichenauer, Wall [1509.02542]]

xTµνpxqk
µkνy ě S2Apxq , @k2

“ 0
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Entanglement Entropy

§ Divide system into two parts (A,B “ Ā)

§ Assume that the Hilbert space factorizes1

H “ HA bHB

§ Compute reduced density matrix by
tracing over HB

ρA “ TrB ρ

§ Entanglement entropy is defined as the
von Neumann entropy of ρA

SA “ ´TrA ρAlogρA

Lattice Theory

A

B

∂A

Quantum Field Theory

A

∂A

B

Σd-1

1This assumption can be problematic for instance in lattice gauge theories, where
the gauge invariant variables are non-local.
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Simple quantum mechanical two spin system

§ A quantum system with two particles (A,B) of spin 1/2 has per construction

H “ HA bHB

§ Consider a general superposition state of two product states

|ψy “ cos θ|01y ` sin θ|10y, |ijy “ |iyA b |jyB @i , j “ 0, 1

§ It is an simple quantum mechanics exercise to compute the entanglement entropy

ρ “ |ψyxψ| Ñ ρA “
ÿ

i

Bxi |ρ|iyB Ñ SA “
ÿ

i

Axi |ρA log ρA|iyA

SApθq “ ´ cos2pθq logpcos2 θq ´ sin2pθq logpsin2 θq

§ For θ “ π{4 one obtains a maximally entangled state SA “ log dimHA “ log 2.
Such states are called Bell states or Einstein-Podolski-Rosen (EPR) pairs.

0
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π
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Entanglement Entropy in QFT

§ The major contribution to entanglement entropy in QFT comes from
Einstein-Podolski-Rosen (EPR) pairs across the entangling surface BA.

§ EE is divergent in QFT: BA is continuous ñ infinitely many EPR pairs.

Results for d-dim. free field theories:

§ Universal area-law UV-scaling: (char. length: ` ! 1, UV-cutoff: ε ! `)

SA “ sd´2

ˆ

`

ε

˙d´2

` sd´4

ˆ

`

ε

˙d´4

` . . .` p´1q
d´2

2 s0 log
`

ε
`Opεq, d even

[Srednicki [hep-th/9303048]]

§ Non-universal IR-scaling: ` " 1
Ground states show area-law scaling

SA9p`{εq
d´2

Thermal states show volume-law sclaling

SA9p`{εq
d´1

  

A

B

x

B A B

�A
EPR-
pairs

A

B
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Entanglement Entropy in CFT2

§ Computing EE in interacting QFTs in d ą 2 is usually intractable.

§ The exception are CFT2, where explicit results can be obtained via the
Replica Method.

[Calabrese, Cardy [quant-ph/0505193] [0905.4013]]

§ Result for CFT2 on R1,1:

SA “
c

3
log

`

ε
` finite .

§ CFT2 on Rˆ S1 has two interpretations:

1) CFT on a compact space of size `S1

SA “
c

3
log

ˆ

`S1

πε
sinh

`

`S1

˙

.

2) Euclidean CFT with T´1
“ β “ `S1

SA “
c

3
log

ˆ

β

πε
sinh

π`

β

˙

.

  

A

B

x

B A B
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Time Dependent States: Quantum Quench in CFT2

§ Assume |ψ0y to be the ground state of the Hamiltonian H0.

§ Suddenly change (quench) the Hamiltonian H0 Ñ H at t “ 0.

§ |ψ0y becomes excited state of H with unitary time evolution

ρptq “ e´iHt
|ψ0yxψ0|e

iHt

§ For the entanglement entropy one finds

SAptq “
c

3
log

β

ε
`∆SAptq , ∆SAptq9

#

πc
6ε
t if t ă l

2
πc
12ε

l if t ě l
2

§ Quasi-particle picture: EPR pairs created at t “ 0, propagate with speed
of light in CFT2, only pairs contribute where one particle is within A.

[Picture: Abajo-Arrastia, Apaŕıcio, López [hep-th/1006.4090]]
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2. Holographic Entanglement Entropy
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The Ryu-Takayanagi Formula

§ In holography SA can be computed from the area of extremal
co-dimension 2 bulk surfaces homologous to the entangling region A.

[Ryu, Takayanagi [hep-th/0603001], Hubeny, Rangamani, Takayanagi [0705.0016]]

§ Extremal surfaces extremize the area functional in AdS space.

§ Infinite extension to the boundary corresponds to UV-divergence in CFT
ñ Regularize the area by chopping the surface at finite r .

SA “
AA

4GN

  

A
B

extremal 
surface 

t=const.

A

d dim. CFT

UV cutoff

d+1 dim. GR
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The Ryu-Takayanagi Formula

SA “
AA

4GN

[Picture: Wikipedia]
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Entanglement Inequalities

§ Entanglement entropy satisfies a number of inequalities that are hard to
proof in QFTs. [Nielsen, Chuang 2000]

§ Bipartite systems H “ HA bHB satisfy subadditivity (SA)

SA ` SB ě SAYB

SA motivates mutual information which is per construction finite

IAB “ SA ` SB ´ SAYB

§ Tripartite systems H “ HA bHB bHC satisfy strong subadditivity (SSA)

SAYB ` SBYC ě SAYBYC ` SB

§ Proofing SSA in holography is simple:

S1,2 ` S2,3 ě S1,2,3 ` S2

A1 A2 A3

z

x

=

A1 A2 A3

z

x

≥

A1 A2 A3

z

x

≥
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Extremal Surface Equations in AdS

We start with the line element of a general asymptotic AdSd`1 spacetime

ds2
“ Gµνdx

µdxν

The embedding Xµ
“ Xµ

pσa, zq of a co-dimension 2 surface is parametrized
with d ´ 2 intrinsic coordinates σa and the bulk coordinate z .
The area functional can be written in terms of the induced metric Hαβ

A “
ż

dzdd´2σ
a

HrX s, Hαβ “ BαX
µ
BβX

νGµν

Variation of the area functional δA “ 0 with respect to the embedding
functions gives the differential equation for the surface

1
?
H
Bαp
?
HHαβBβX

µ
q ` HαβBαX

σ
BβX

νΓµσν “ 0

Solving this non-linear PDE subject to BCs describing the entangling region is
hard. Explicit solutions are only available for highly symmetric cases in which
the entangling region respects the symmetries of the bulk geometry.
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Reduction to a Geodesic Problem

In the AdS3 case the minimal surfaces reduce to geodesics determined by the
geodesic equation

:Xµ
` Γµρσ 9X ρ 9Xσ

“ 0

A similar reduction also works in higher dimensions, if the entangling region
does not break the symmetries of the bulk geometry, e.g. stripe regions.

A “
ż

d3σ

d

det

ˆ

gµν
BXµ

Bσa

BX ν

Bσb

˙

“

ż

dx3

ż

dx2
looooomooooon

8 volume factor

ż

dσ

c

Ω2gµν
BXµ

Bσ

BX ν

Bσ

The Christoffel symbols Γµρσ are then computed from the metric with an
additional conformal factor g̃µν “ Ωpz , t, x1q

2gµν .

  

A

homogeneous
directions

B

t=const.d dim. CFT

d+1 dim. GR

UV cutoff

geodesic 
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Minimal Surfaces in BTZ Geometry

BTZ geometries are holographic duals of thermal states with T “ β´1
“ 1

2π
r`

in CFT2 on S1
ˆ R.

ds2
“ ´pr 2

´ r 2
`qdt

2
`

dr 2

r 2 ´ r 2
`

` r 2dϕ2 , ϕ P r0, 2πq

For the entangling region A “ tt “ t0,´ϕ0 ă ϕ ă ϕ0u the one obtains

SA “
A

4G p3qN

“
cA
6
“

$

&

%

c
3

log
´

β
πε

sinh
´

R
β
ϕ0

¯¯

ϕ0 ă ϕ˚ ,

c
3
πr` `

c
3

log
´

β
πε

sinh
´

R
β
pπ ´ ϕ0q

¯¯

ϕ0 ě ϕ˚ ,

§ Homology constraint: Surfaces must be
smoothly retractable to A.

§ ϕ “ ϕ˚ (red dashed): saddle points of the
area functional exchange dominance1.

§ ϕ ą ϕ˚ (black dashed): two disconnected
surfaces ñ SA “ SBH ` SĀ.

§ Entanglement plateau: SA saturates to
thermal entropy for large sub-regions.

[Hubeny, Maxfield, Rangamani, Tonni [1306.4004]]

1The case ϕ “ ϕ˚ saturates the Araki-Lieb inequality |SA ´ SB | ď SAYB .
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Schwarzschild Black Brane

AdSd`1 black brane geometries are holographic duals of thermal states with
T “ d

4π
d
?
M in CFT4 on Md .

ds2
“

1

z2

´

´p1´Mzd
qdt2

´ 2dzdt ` d~x2
¯

§ surfaces remain always outside the BH horizon.

§ We recover the universal area law for small regions (` ă zh).

§ For large regions (` ą zh) the vacuum (M “ 0) gives the area law and
thermal states (M ‰ 0) the volume law5.
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5The plot is for the entanglement densities in the 1-dim subspace of the stripe
region, i.e. the are is 0-dimensional and the Volume is 1-dimensional.
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Vaidya Quench

§ Vaidya-AdSd`1 geometry in Eddington-Finkelstein coordinates

ds2
“

1

z2

´

´
`

1´Mptqzd
˘

dt2
´ 2dzdt ` d~x2

¯

,Mptq “
1

2

´

1` tanhpatq
¯

§ Quench: Infalling matter shell = sudden injection of energy in CFT

§ Entanglement Tsunami:

t ď βeq : ∆SAptq “
π

d´1
εAreapBAqt2

` . . . , where βeq “ T´1
eq

βeq ! t ! `{2 : ∆SAptq “ vEseqAreapBAqt ` . . .

t " `{2 : SAptq “ seqVolpBAq
[Liu, Suh [1305.7244]]
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