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Plan of the Lectures

Day 1

» Lecture 1: Introduction to AdS/CFT

» Tutorial 1: Putting Einstein Equations on the Computer
Day 2

» Lecture 2: Holographic Heavy lon Collisions

» Tutorial 2: Time Evolution of a A/ = 4 SYM Plasma
Day 3

» Lecture+Tutorial 3: Entanglement Entropy
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Useful References

Introduction to AdS/CFT and Applications:

» Introductory book on AdS/CFT: Ammon, Erdmenger, Cambridge University
Press (2015)

» Condensed version in TASI lectures 2017 [1807.09872] by Erdmenger.
» Book on AdS/CFT applied to Heavy lon Collisions: Casalderray-Solana, Liu,

Mateos, Rajagopal, Wiedemann, Cambridge University Press (2014), preprint:

[1101.0618].

» Book on AdS/CMT: Zaanen, Sun, Liu, Schalm, Cambridge University Press
(2016)

> Book on holographic entanglement entropy: Rangamani, Takayanagi, Lecture
notes in Physics, Springer (2017), perprint: [1609.01287]

Numerics:

> Review on Characteristic Method for Numerical Holography:
Chesler, Yaffe [1309.1439]

» Book on Spectral Methods: Boyd, Dover Publications (2001)
Code:

> Book by Trefethen has MATLAB code examples

» Homepage by van der Schee has instructive Mathematica codes.

> These slides and Mathematica files used in the tutorials on
http://christianecker.com/.
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https://arxiv.org/pdf/1807.09872.pdf
https://arxiv.org/abs/1101.0618
https://arxiv.org/pdf/1609.01287.pdf
https://arxiv.org/pdf/1309.1439.pdf
http://depts.washington.edu/ph506/Boyd.pdf
https://people.maths.ox.ac.uk/trefethen/spectral.html
https://sites.google.com/site/wilkevanderschee/ads-numerics
http://christianecker.com/

Outline of Lecture 1

1. The AdS/CFT Correspondence
2. Computing Observables in AdS/CFT
3. Numerical Relativity on AdS
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1. The AdS/CFT Correspondence
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What makes AdS/CFT special?

One of the major theoretical developments in the last twenty years.

It relates conformal field theories (CFTs) to higher dimensional gravity in
Anti de Sitter (AdS) space.

It is a strong-weak duality: if field theory is strongly coupled the gravity
theory is weakly coupled and vice versa.

Provides a framework for calculating observables in strongly coupled
gauge theories which are generically hard to solve.

This is for instance relevant for QGP in heavy ion collisions, strongly
correlated condensed matter systems, neutron stars, ...

Provides unexpected links between previously unrelated areas of physics,
e.g.: General Relativity and Quantum Information
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AdS/CFT Correspondence

Type IIB string theory on AdSs xSs

SU(N) A = 4 Super Yang-Mills (SYM) theory on My

[Maldacena [hep-th/9711200]]

The correspondence relates the parameters of the two theories

g =2mgs, A =2gyyN =L/
The correspondence is conjectured to hold for any value of the 't Hooft
coupling X\ = 2gZy, N and rank of gauge group N.

Supergravity limit: Assuming point like strings (¢s — 0) and small
coupling (gs « 1) reduces the string theory side to classical supergravity.

This corresponds to the N — o0 and A — o0 limit on the field theory side

4
L A large A N—oo
—_—

4 _ L Alarge _ N
ES—)\ 0, gs 5N 0.

= Observables in a strongly coupled field theory (hard) can be obtained
from a classical gravity calculation (easy).
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https://arxiv.org/pdf/hep-th/9711200.pdf

The Field Theory Side: N = 4 SYM

v

N =4 SYM is a SUSY field theory with a gauge field, scalars and
fermions in the adjoint representation of the gauge group.

» The [ function vanishes exactly to all orders in perturbation theory

= it is superconformal®, hence no running coupling, no confinement and
no chiral symmetry breaking.

» This is quite different from QCD which is has no SUSY, has fermions
(quarks) in the fundamental representation, non-trivial 8 function,
confinement and a chirally broken vacuum.

» However, at T > T. ~ 170MeV some of the qualitative differences
become unimportant and many authors used it as toymodel for the
quark-gluon plasma produced in heavy ion collisions.

> Finite T explicitly breaks SUSY.

» Above T. QCD is deconfined and the chiral condensate melts away.

LA = 4 is the maximum number of SUSY generators in D=4 for spin < 1, i.e.
without gravity, which makes the theory maximally supersymmetric.
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The Gravity Side: AdS Spacetime

» AdS4+1 is a maximally symmetric solution of the Einstein equations with
negative cosmological constant A and negative curvature radius L.
d(d—-1)
212

1
R — ERg“" +Aguw =0, A=-—

» This is different form our universe which is well described by de Sitter

space with small positive cosmological constant A = 1.1056 x 10752 m~2.

» In Poincaré patch? coordinates the line element of AdS reads

ds® — L 2 r’ 2 =2
s —ﬁdr +p(fdt + dx%)
|\ —
boundary metric

> AdS space has a timelike boundary at r = o0, which for the Poincaré patch
is Minkowski space. In the AdS/CFT context this is where the CFT lives.

» Asymptotic AdS spacetimes, like the AdS black brane, look only at r —
like AdS, but differ in the interior, e.g. by the presence of a BH horizon.

2The Poincaré patch covers only part of global AdS which has a compact boundary.
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The Holographic Dictonary

» Every field on the gravity side corresponds is dual to a gauge invariant
operator on the field theory side.

Gravity Side ‘ Gauge Theory Side
metric g, | T"" stress tensor
scalar field ¢ | O scalar operator
gauge field A, | J* global sym. current
fermion field v | Oy fermionic operator

> Operator O of dimension A sourced by J = ¢¢ dual to scalar with mass m

(r,t,%) ~ J(t, ) r TTEHOt, ) h, A= gﬂ/% +m2l2, mPL®> —d{

» Geometry in the bulk corresponds to a state in the field theory:
e.g.: black hole geometries correspond to finite temperature states with T
equal the Hawking temperature of the BH.

> Holographic thermalization: The dynamical process of BH formation
gets mapped to the relaxation and thermalization of excited states in the
field theory.
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Computing Observables

» Expectation values of correlators of gauge invariant operators in the CFT
follow from variations of the renormalized gravity action Sren[¢] w.r.t. the
boundary values ¢g of the dual fields ¢

6" Sren[ 9]

(@] .. O(xp = .

(OCa).-- Obaberr = 5 00Y. - 660(x) koo

» For instance the holographic stress tensor follows from

_ 2 65ren
/B0 985 (X)

> Let's do this for a simple gravity action without bulk matter

(Tuw (x)) =

1 i1 dd—1\ 1 fd
S= 167Cn d x\/§<R+ B 81 Cn dx\ /K.
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Fefferman-Graham Expansion

» The bulk metric Guy can be expanded in the radial coordinate p

2
ds® = GundxM ™ = 1 (j; + %g,w(p, x)ddeXV>

> Fefferman-Graham theorem: If Gy satisfies the Einstein equations,
then gy, has the following expansion

8uv (/)7 X) = g(O)uV(X)+pg(2)uV(X)+' . ~+pd/2 (IOg(p)h(d);w (X) + 8(dyuv (X))+~ ..

» The expansion coefficients are obtained by solving the Einstein equations
order by in p, where the leading ones only depend on the boundary metric

L 1
g (X) = = (R(Onw - mR(O)gw)w)

> Important remarks:
Logarithms are related to conformal anomalies and only present for even d.
Coefficients of order > d can only be extracted from full bulk solution.
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Holographic Renormalization

» Putting the asymptotic expansion into the action and evaluating it at
cutoff € « 1 gives

1

I T f d’x /B0 (a0e ? +ape ¥ + ..~ logawe) + Sinie

» To renormalize the action we have to add appropriate counter terms®

Sren = l'”’(‘)(se + Sct)

» Varying the renormalized action w.r.t. the boundary metric gives the

stress tensor
2 0Sren

V/B(0) 98(g) (%)
> For d = 4 this gives the following expression for the holographic energy
momentum tensor [de Haro, Skenderis, Solodukhin [hep-th/0002230]]

(T (x)) =

4 1 5 5 1, 1
(Tuvy = TonGy (g(4)w t3 (Trg<2) — (Trg(z)) )g(O),uu - E(g(z))‘“' + Zé’(z);wTrg@))

3The counterterms are usually ambiguous, and a specific choices for S¢; correspond
to specific renormalization schemes.
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https://arxiv.org/pdf/hep-th/0002230.pdf

2. Numerical Relativity on AdS
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Characteristic Formulation

AdS is not globally hyperbolic, i.e. has no Cauchy
slice: Need 1Cs+BCs to obtain well defined initial
value problem.

AdS-BH t
3

Light-like slicing results in characteristic
formulation of GR, realized by generalized
Eddington-Finkelstein (EF) coordinates

r2

ds®> = 2dvdr + Fgw(r,x“)dx“dx".
BC's
EF coordinates are regular across black hole
horizons.

Residual gauge freedom can be used to fix radial
position of the apparent horizon Pure AdS

r=0 r=oco
r—F=r+&(x").
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Caustics

» Penrose focusing theorem: "Matter focuses light.”

» Coordinate lines are light-like geodesics which can form caustics.
Caustics are coordinate singularities destroying the coordinate system.

> Increase regulator energy density to hide caustics behind horizon.
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>

Anisotropic AdSs Black Brane

Simplest non-trivial case: homgeneous, anisotropic AdSs black brane.

ds® = —

(r,v)dv® + 2dvdr + S*(r, v) (edB("V)dy2 + B d>?2)

BCs: Minkowski boundary dsgdry| = —dt?® + d%*

6.6 .—

ICs: Warp factor B(r, vo) = %fe

Models isotropization of an intially anisotropic N = 4 SYM plasma.

2
15
1

=05

Initial Conditions

Event Horizon

(

1
.

Apparent Horizon

—1)? B o
4)  Energy ag = —1— Teqg = +
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Characteristic Bulk Equations

» For this simple example we need to solve the 5D Einstein equations

1

Ruv = 5 Rguw + Ngius =0 s:t. ds®|, o = rP(—dt® + dx°).
» Derivatives along ingoing (prime) and outgoing (dot) null geodesics
W =dh, h=adh+3IAdh.
> Einstein Equations decouple into a nested set of ODEs
IC's: BU:% — S+ %BQS =0 (1) B — B(7,+A7,):B(T,)+A’U&UB(U)
S(S) +258'§-252=0 (2) T o
S(BY +3(S'B+2B'S)=0 (3) ) !

A"+3B'B-125'8/S? +4=0 (4) —— B=0,B+149.B
S+1(B*S-A'S)=0 (5)

» Use constraint (1) to prepare ICs, constraint (5) to monitor accuracy.
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Field Redefinitions

Use inverse radial coordinate z = % where the AdS boundary is at z = 0.

Finite fields are obtained by factoring out the analytically known divergent
near boundary part

A(z,v) — %-{-zi\(z, v), S(z,v)— %-{-225(27 v), B(z,v)— z°B(z,v).

Redefinitions are tailored to read off the normalizable modes

bs(v) = B'(0,v), as=A(0,v)
On each slice we have to solve boundary value problems (BVP) with BCs
fixed by the near boundary expansion, e.g. eq.(4) takes the form

2

4. _ 5 i
A's “A+ SA=ja st A0,w) = 0,A(0,w) = a

In Lecture 2 we will learn how to solve such BVPs efficiently using
spectral methods.
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Time Stepping

» Simplest way: 1% order Euler method
yi(t + At) = y;(t) + At -y (t).
» More accurate: 4™ order Adams-Bashforth

yi(t+4At) = y;(t+3At)+% (55y; (t + 3At) — 59y, (t + 2At) + 37y/ (t + At) — 9yi (1)) .

» Requires derivatives at three previous time steps — have to use
lower order method for the first steps (lower accuracy).

23/67



Near Boundary Analysis

Near r — oo the Einstein equations have the power series solution

A(r,v) = + a4r(2v) + 32(‘3/) +0(r ™,
S(r,v)=r— é;‘,‘é;) — 7(r7) +0(r'?%),
B(r.v) = 200 L B o),

ao(v), s0(v), bo(v) are fixed by BCs: ds?|, oo = r?(—dt? + dx?)
bs(v) needs to be extracted form the numerical solution.
a4(v) and bs(v) contain information on the field theory stress tensor

(T = % diag[€, Py(), PL(t), PL(t)]

3 1 1

£ = ——as, P”(t) = —724—2b4(i‘)7 PJ_(t) = —*a4+b4(t)
4 4 4
Energy conservation at 5™ order: aj(v) = 0 — as(v) = const.
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Summary of Lecture 1

The AdS/CFT correspondence relates strongly coupled N' = 4 SYM
theory to classical gravity on AdS.

The basic method to compute observables, e.g. the stress tensor, in
AdS/CFT is holographic renormalization. This requires to solve the
Einstein equations perturbatively close to the boundary.

The characteristic formulation reduces the Einstein equations (PDEs) to a
nested set of ODEs. This is drastically simplifies the numerics.

In the Tutorial 1 this afternoon we will use Mathematica to bring the
Einstein equations into characteristic form, perform the near boundary
analysis and derive the stress tensor.
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Outline of Lecture 2

1. Spectral Methods
2. Homogeneous Isotropization
3. Boost Invariant Hydrodynamization

4. Shockwave Collisions
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>

Recap: Anisotropic AdSs Black Brane

Simplest non-trivial case: homgeneous, anisotropic AdSs black brane.

ds® = —

(r,v)dv® + 2dvdr + S*(r, v) (edB("V)dy2 + B d>?2)

BCs: Minkowski boundary dsgdry| = —dt? + dx*

6.6 ,—

ICs: Warp factor B(r, vo) = %fe

Models isotropization of an intially anisotropic N = 4 SYM plasma.

2
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Initial Conditions

Event Horizon
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Apparent Horizon
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4)  Energy ag = —1— Teqg = +
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Recap: Anisotropic AdSs Black Brane

> We have to solve the 5D Einstein equations

IC's: B’U:vo — S+ %BIQS =0 (1) =— B(71+Av):B(71)+A’U8UB(U)
S(8) +28'S—-252=0 (2)
5\/ 3/alT e 01,3
S(B) +35(8B+2B'S)=0 (3) N
A"+3B'B-125'9/S* +4=0 (4) —— B=0,B+149,B
S+1(B*S-A'8) =0 (5)
> After using inverse radial coordinate z = % and factoring out the

analytically known divergent near boundary part, we are left over with a
set of boundary value problems (BVP) on each slice, e.g. (4)

v 4 . 2 . . .
A"+ ;A/ + ;A =ja, s.t. A(O7 Vo) =0, A/(O, Vo) = a4
» To evolve between slices we use 4™ order Adams-Bashforth
At

yi(t+4At) = yi(t+3At)+ 4 (55y; (t + 3At) — 59y; (t + 2At) + 37y (t + At) — 9y/ (1)) .
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Spectral Methods

Expand in terms of Chebyshev polynomials

N—1
y(x)~ Y cTi(x), Ti(cos(x)) = cos(ix)

i=0
Highly efficient because of spectral convergence: error~ (Ax)"
Spectral (Chebyshev) grid

x; = cos(im/N), i=0,...,N

Differentiation and integration on the spectral grid by matrix
multiplication

vi=y(x), vi=Djy, y'=Djy, fdxyf =Dy

Spectral matrix, see book by Boyd 2001

S (—1)H
p, = &=V ) —v=2c=1. i%j. ij=0. N
C_,' X,'*Xj
2N% +1 2N% +1 X
Dp=""" pw=-"T"°- p——_3 _ j_1
00 6 ) NN 6 ) di 2(17)9'2)7 J )


http://depts.washington.edu/ph506/Boyd.pdf

Boundary Value Problem (1)

> Consider the simple boundary value problem
Y'(x) +y'(x) =20xy(x) =0,  BC: y(-1)=5,y(1) = -1

» It has a (not so simple) analytic solution

1
5 (=x—1) i 19 ; 81 i _80x+1 ) _ T ; 81 i [ _80x+1
A (o) - () )= (3%55) - (= (o)« (38)) (3555))

y(x) =

: 81 (19 YT ' 81
AI(8\3/§52/3>B|< 8\3/552/3> AI( 8\3/552/3>Bl<8«3/§52/3
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Boundary Value Problem (1)

» Express the differential operator matrix and the source vector on the grid
L = 03+0x—20x — L; = Dj+D;—20diag(x);, S=0-— S =(0,0,...,0)
» Implement BCs: y(—1) =y =5,y(1) =yn = —1

1 0 o ... o0 " 5
Loy Loy Lo e Loy ¥ 0
Ly-11 Lyv—12 Ln—1iz o0 Lv—aw | | yw— 0
0 0 o ... 1 W —1

» The solution vector y; is obtained by simple matrix inversion: y; = LUflSj

max[Ay]
0.01f,

107

121
x10

10717}
10722}

10727}
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2. Holography and Heavy lon Collisions
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Heavy lon Collisions

» Relativistic collisison of heavy ions (Au, Pb) at RHIC and LHC produce a
deconfined state of quarks and gluons called quark-gluon plasma.

by 25 s s 4 final detected
Relativistic Heavy-Ion Collisions particles distributions|

Kinetic

Hadronization

l

Initial energy
density

pre-

ynamics viscous hydrodynamics
I
t~0fm/c T~1fm/c © ~10 fm/c © ~10% fm/c

eguxlibrium
[

free streaming
collision evolution g
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Holography for HICs

» The plasma is strongly coupled in the early stages of the collisions, which
makes first principle calcualtions in perturbative QCD intractable.

» Experiments are only well described by viscouse hydrodynamics when
assuming small /s and early onset (~ 1fm/c) of hydro.

» Holography predicts such small viscosity /s = ﬁ for N = 4 SYM*,
[Policastro, Son, Starinets [hep-th/0104066]]

» Holography naturally realizes fast thermalization /hydrodynamization.

> Lattice calculations in thermal equilibrium suggest small influence of N.

Pressure

cGC
1
2 T T T
0 STAR non-flow corrected (est). . 09 b
@ STAR event-plane n/5=0.08 [ ]
20f — i _os
 (09%00,%, oot 207t fﬁ//"’,
= 8 =
2 15 * 2 o6k = 4
3 00090000, 0o F 7
bl oW w o Zos ]
2 » — L]
10 Jns=016 3
> g 04 . SU@3) b
H L suw
w03 . SU(S) —
5 i N . SUG)
02 « SU8) —
E improved holographic QCD model
. . . o F ]
1 2 3 4 _J’f Il Il L Il
p;[GeV] s 1 is 2 25 3 3s

/7,

[Luzum, Romatschke [0804.4015]]

[Panero [0907.3719]]
4This result is universal for all theories with Einstein gravity dual.
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https://arxiv.org/pdf/hep-th/0104066.pdf
https://arxiv.org/pdf/0804.4015.pdf
https://arxiv.org/pdf/0907.3719.pdf

Homogeneous Isotropization of A/ = 4 SYM Plasma

» The QGP in HICs is initially highly anisotropic (PL # Py).

> The anisotropic AdSs black brane introduced in Lecture 1 models the
isotropization of a strongly coupled non-Abelian plasma.

(THS = %diag [€, Py(t), PL(t), Pi(t)]

AN

o5~ 1.0 15 2.0

_8 P" _PL
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Quasinormal Ring Down

» The late time dynamics of the plasma is described by quasinormal modes

of the black brane.
[Starinets hep-th/0207133]

A1

_ D .
APocReZn: che Z = 2.7467+3.1195/, ﬁ = 4.7636+5.1695/ , ...

» Accuracy with only 30 grid points is good enough to extract lowest QNM.

Abs[ 6P(1)] maxgcgnstraint]
s
107" 107
1079
107 )
10710
1077 10-1
10710 1077
t -13 t
2 4 6 8 100 10 1 2 3 4 5
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https://arxiv.org/abs/hep-th/0207133

Boost Invariant Hydrodynamization

The previous model was to simple to study the approach to hydro.
The easiest way to realize a non-trivial flow is to use proper time and
rapidity coordinates and assume boost invariance (=y-independence)

t=7coshy, xj=7sinhy, ds,fdry = —dr? + 2dy® + dX2

ds’ = —A(r,7)d7* + 2drdr + S(r,7)*(e P dy? + T dx7T) .
Energy momentum tensor is diagonal
2

T = N¢ diag [£(7), Py (), PL(T), PL(T)]

272

Conditions: V,, T*” =0 and T})/ = 0 imply
. 1 .
Py =-E-7E, 'PL:L€+§T5

Evolution of the system is captured by a single function £(7).

Strict for an infinite energy collision of infinitely large nuclei.
[Bjorken Phys. Rev. D 27, 140 (1983)]
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.27.140

Effective Temperature

» Late time: 2" order hydrodynamic expansion

3rAY 2a 2
) = s (1 o agE )

71'4/\4 C2
Pi(r) = TIYSEE (1— G +) ,

7T4/\4 2C1 5C2
PIT) = aarys (1 T AR T BAnE T > '

[Baier, Romatschke, Son, Starinets, Stephanov [0712.2451]]

» Leading order gives the Bjorken solution &(7) = % of ideal hydro.

» Viscous correction coefficients can be computed in holography

1 ~2+41n2

N:4SYM: C1:37, C = 187‘(‘2

» The energy scale A is the only trace of initial conditions.
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https://arxiv.org/pdf/0712.2451.pdf

Pressure Anisotropy

» Energy density defines local effective temperature

E(r) = 2x*T(r)".

> Introduce the dimensionless time variable w = 7T (7).
> The pressure anisotropy is defined as

_ Py(w) — Pi(w)

AT

where P = £/3 is the equilibrium pressure.

> Since A = 0 for equilibrium, the pressure anisotropy is a measure of the
distance from local equilibrium.
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Universality

> Universal approach to equilibrium: initial state information is dissipated
exponentially at early times.

Thermalization # Hydrodynamization

Alwp) = @ ~13at wy ~0.7

12

10

,_-—:ﬁ—-———---.-

Aw)
IS

0.0 0.5 1.0 1.5 2.0

[Jankowski, Plewa, Spalinski [1411.1969]]
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https://arxiv.org/abs/1411.1969

Shockwave Collisions in AdS

Collisions of gravitational waves in AdS as toy model for HICs.

ds® = —A(r, v, y)dv?+2dv(dr+F(r, v, y)dy)+X(r, v, y)* (e 2B dy? 4 B9 g22)

[Chesler, Yaffe [1011.3562]]
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https://arxiv.org/pdf/1011.3562.pdf

Initial Conditions

The pre-collision geometry describing two shocks moving in +y-direction
in Fefferman-Graham coordinates (7, £, #, F) can be written down explicitly

ds? = P, d5"dS” +% (dF2 + h(E + §)(dE + d§)? + h(E — 7)(df — d}"/)z) .

The function h(f + §) is an arbitrary function usually chosen as Gaussian

h(t+7) =

In this gauge the EMT describes two lumps of energy with maximum
overlapat f =0

TE—T7 —hE-g)+hE+y), T =hE-y) —h(E+7).

For the time evolution these initial conditions need to be (numerically)
transformed to Eddington-Finkelstein gauge.
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Hydrodynamization of Shocks

wnz =3

0.2

0.75 —

0.15/ —u/u

===hydro

0.5

0.1
0.25
0.05
0 or
-2 0 2 4 6 0 1 2 3 4 5 6
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Wide vs. Narrow Shocks

Two qualitatively different dynamical regimes:

» Wide shocks: "full stopping”, immediate hydrodynamic explosion
after the collision, similar to low energy collisions at RHIC.

» Narrow shocks: "transparency”, shocks pass through unperturbed,
delayed plasma formation, similar to high energy collisions at LHC.

[Casalderrey-Solana, Heller, Mateos, van der Schee [1705.01556]]

&yt &yt

8
6

4

[
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b
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!
27
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0
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https://arxiv.org/pdf/1305.4919.pdf

Null Energy Condition in Shckwave Collisions

Narrow shock wave collisions can violate the null energy condition (NEC)
[Arnold, Romatschke, van der Schee, [1408.2518]]

T kK" >0, Vk,k* =0

black region: T, k"k"” < 0

2.0

~05 black region:
NEC violated 2
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QNEC in Shockwave Collisions

In quantum field theory the quantum null energy condition (QNEC) replaces
the classical NEC.

[Bousso, Fisher, Koeller, Leichenauer, Wall [1509.02542]]
h
(Tuk"k"y =

S", Vk,k* =0
27vh "

QNEC for L - o (uy =0)
0.8 w : .
0.6 | — S."251]
0.4+ I‘|| ----- S_"2rr ]
0.2} i — T
0.0 "‘ eSS
_02 -~ \JNEC violated
' QNEC saturated
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v

v

Generalizations

Fully localized shocks including longitudinal and transverse

dynamics.
[Chesler, Yaffe [1501.04644]]

Conformal symmetry breaking with non-trivial scalar field potential
tn the bul

Attems, Casalderrey Solana, Mateos, Santos-Olivan, Sopuerta, Triana, Zilhao [1604.06439]]

Finite coupling corrections using Gaus? Bonnet grazj/ltyS hee [1610.08976]
FOZ anov, van der >chee

Inclusion of "quark” chemical potential by adding gauge field in the

bulk.
[Folkestad, Grozdanov, Rajagopal, van der Schee,[1907.13134]]

t=-2 | t=20 | t=2 I t=4

energy density
o =

[Pichture: Chesler, Yaffe [1501.04644]]
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Steady State Formation

» Thermal contact between strongly coupled quantum critical systems gives
rise to a homogeneous steady state with non-vanishing energy flow.

» D=2: Steady state is described by Lorentz boosted equilibrium state with
T = VTi* Tr.

Dynamics completely fixed by conformal symmetry: two shock waves with
constant profile moving at the speed of light to cold and warm side.

v

Steady state

e

T = —ugt T =ugt AdS boosted black hole ) W |0

/

To

T

[Bhaseen, Doyon, Lucas, Schalm [1311.3655]]
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Steady State Formation in AdSs

» D > 2: Hydrodynamic solution not unique. Two shocks mathematically
correct solution to ideal hydrodynamics.

» Problem: shockwave propagating to the warm bath violates (locally) the
second law of thermodynamics.

v

Physical solution: shockwave moving to cold, rarefaction wave moving to
warm.

v

Holography automatically delivers physical solution.
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Summary of Lecture 2

Spectral methods are an efficient tool to numerically solve
differential equations.

The late time dynamics of the homogeneous and anisotropic plasma
is described by exponentially damped oscillations (QNMs).

Boost invariant model evolves towards universal hydrodynamic
regime.
Collisisons of gravitational shocks in AdS as model for HICs.

In Tutorial 2 in the afternoon we will learn how to solve BVPs using
spectral methods. Furthermore, we will solve compute the time
evolution and analyze the late time behaviour.

Steady state formation with end state has non-trivial energy flow.

Recent developments include localized shocks, conformal symmetry
breaking and finite coupling corrections.
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Outline of Lecture 3

1. Entanglement Entropy
2. Holographic Entanglement Entropy
3. Tutorial 3: Shoot & Relax in AdS Space
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1. Entanglement Entropy
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Why is entanglement entropy interesting?

Entanglement entropy is a measure for entanglement in quantum systems.

A concept that originated in quantum information theorﬁ.
[Nielsen, Chuang Cambridge University Press, 2010]

It was proposed as a way of understanding black hole entropy.
[Bombelli, Koul, Lee, Sorkin 86, Srednicki [hep-th/9303048]]
It provides a measure for dofs in renormalization group flows.
[Casini, Huerta [cond-mat/0610375],[1202.5650]]
Order parameter for exotic phase transitions in quantum critical systems.
[Osborne, Nielsen [quant-ph/0202162], Vidal,Latorre, Rico, Kitaev [quant-ph/0211074]]
In holography the Ryu-Takayanagi formula relates the area of extremal
surfaces in gravity theory to quantum entanglement.
[Ryu, Takayanagi [hep-th/0603001],[hep-th/0605073]]
A
4Gy
Recently used to formulate the quantum null energy condition (QNEC), a
universal energy bound in QFTs.

Sa

[Bousso, Fisher, Leichenauer, Wall [1506.02669],
Bousso, Fisher, Koeller, Leichenauer, Wall [1509.02542]]

(T ()K" K> = Sh(x), Yk> =0
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>

>

>

Entanglement Entropy

Divide system into two parts (A, B = A)
Assume that the Hilbert space factorizes

H=HasQR@HB
Compute reduced density matrix by
tracing over Hpg

pa="Trgp

Entanglement entropy is defined as the
von Neumann entropy of pa

Sa = —Trapalogpa

1

Lattice Theory

bt oi
bbb
bl
bbbt
T

Quantum Field Theory
Z4

IThis assumption can be problematic for instance in lattice gauge theories, where
the gauge invariant variables are non-local.
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Simple quantum mechanical two spin system
A quantum system with two particles (A,B) of spin 1/2 has per construction

Consider a general superposition state of two product states
[p) = cos 6]|01) + sin 0]10),

Sa(0) =

|10)

— cos?(8) log(cos? §) — sin?() log(sin® 0)
For 6 = m/4 one obtains a maximally entangled state Sy = logdimH 4 = log 2.
Such states are called Bell states or Einstein-Podolski-Rosen (EPR) pairs.

1

H=HaQ®Hp

71_2—(|1o)-|01))

1

liy =1a®li)s Vi,j=0,1
It is an simple quantum mechanics exercise to compute the entanglement entropy

p =) = pa =Y 84lplive = Sa = Y alilpalog palida

o)

0.7
0.6
0.5
P 0.4]
0.3
0.2
0.1
0.0

on

=k

N
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Entanglement Entropy in QFT

> The major contribution to entanglement entropy in QFT comes from
Einstein-Podolski-Rosen (EPR) pairs across the entangling surface JA.

» EE is divergent in QFT: 0A is continuous = infinitely many EPR pairs.

Results for d-dim. free field theories:

> Universal area-law UV-scaling: (char. length: £ « 1, UV-cutoff: € « ¢)

d—2 d—a s ’
Spa = S4_2 (E) + Sg—4 (g) + ...+ (—1)750 log - + 0(6), d even

[Srednicki [hep-th/9303048]]

> Non-universal IR-scaling: ¢ >» 1 A
Ground states show area-law scaling
EPR-
Sacc (£/e)?2 pairs
o--
Thermal states show volume-law sclaling
Saoc (£/e)? 7 B
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Entanglement Entropy in CFT,

Computing EE in interacting QFTs in d > 2 is usually intractable.

The exception are CFT,, where explicit results can be obtained via the
Replica Method.
[Calabrese, Cardy [quant-ph/0505193] [0905.4013]]

Result for CFT» on RY:

2
Sa = glogg + finite. B A B

CFT2 on R x S1 has two interpretations: 4_€>’_>X

1) CFT on a compact space of size s,
A

s, L
h —
Sa =3 Iog ( sin 451) ’

2) Euclidean CFT with T™' = 8 = /g

Sa =3 Iog (ﬁ sinh FZ) .
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Time Dependent States: Quantum Quench in CFT,

» Assume |¢o) to be the ground state of the Hamiltonian Ho.

v

Suddenly change (quench) the Hamiltonian Hy — H at t = 0.
> |10y becomes excited state of H with unitary time evolution

p(t) = e ™ poy(apole™

> For the entanglement entropy one finds

e ift< g
Salt) = %Iogg +ASA(),  ASa(t)ec { e
12¢ =2

» Quasi-particle picture: EPR pairs created at t = 0, propagate with speed
of light in CFT», only pairs contribute where one particle is within A.

A

2t<|

A A A

LR
\ %‘g‘&,o,o, 2t>1

Picture: Abajo-Arrastia, Aparicio, L6 hep-th/1006.4090
[Picture ajo-Arrastia, Aparicio, Lépez [hep-th 1l 58/67
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2. Holographic Entanglement Entropy
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The Ryu-Takayanagi Formula

> In holography Sa can be computed from the area of extremal

co-dimension 2 bulk surfaces homologous to the entangling region A.
[Ryu, Takayanagi [hep-th/0603001], Hubeny, Rangamani, Takayanagi [0705.0016]]

» Extremal surfaces extremize the area functional in AdS space.

> Infinite extension to the boundary corresponds to UV-divergence in CFT
= Regularize the area by chopping the surface at finite r.

A
4Gy

d dim. CFT t=const.

’

d+1 dim. GR
extremal
¢ surface X
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The Ryu-Takayanagi Formula

[Picture: Wikipedia]
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>

Entanglement Inequalities

Entanglement entropy satisfies a number of inequalities that are hard to
[Nielsen, Chuang 2000]

proof in QFTs.

Bipartite systems 1 = Ha ® Hp satisfy subadditivity (SA)

SA motivates mutual information which is per construction finite

Tripartite systems H = Ha ® Hg ® Hc satisfy strong subadditivity (SSA)

Sa+ Sg = Saus

lag = Sa+ S — Saus

Saus + Sguc = Savsuc + SB

Proofing SSA in holography is simple:

Sip+S3 > +
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Extremal Surface Equations in AdS

We start with the line element of a general asymptotic AdSy+1 spacetime
ds® = G, dx"dx”

The embedding X* = X*(0?, z) of a co-dimension 2 surface is parametrized
with d — 2 intrinsic coordinates o? and the bulk coordinate z.
The area functional can be written in terms of the induced metric Hup

A= szdd—zm/H[X], Hog = 0aX"05X" Gy

Variation of the area functional § A = 0 with respect to the embedding
functions gives the differential equation for the surface

1
VH
Solving this non-linear PDE subject to BCs describing the entangling region is

hard. Explicit solutions are only available for highly symmetric cases in which
the entangling region respects the symmetries of the bulk geometry.

Oa(WHHP 35 X") + H* 0,X7 05X TH, = 0
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Reduction to a Geodesic Problem

In the AdS3 case the minimal surfaces reduce to geodesics determined by the
geodesic equation B o

X+ TH XPX7 =0
A similar reduction also works in higher dimensions, if the entangling region
does not break the symmetries of the bulk geometry, e.g. stripe regions.

(s oXr oXv\ j j J ,  OXH XY
A= Jd U\/det (gw 207 d0b ) = dxs | dx2 | doa | QPgu. o o
| —

20 volume factor

The Christoffel symbols ', are then computed from the metric with an
additional conformal factor g, = Q(z,t,x1)?gu.-

d dim. CFT t=const.

Y~ UV cutoff
x’:vz,ﬁg,...

----------------- ’ homogeneous
directions

d+1 dim. GR
geodesic "
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Minimal Surfaces in BTZ Geometry

BTZ geometries are holographic duals of thermal states with T = 87! = im

in CFT, on St x R.
ds® = —(r* — r2)dt’ + o

+r dgo , @€[0,2m)
r?

For the entangling region A = {t = to, —po < ¢ < @0} the one obtains

s A cA 5 Iog( sinh (ggw)) o < Qs ,
= = ——— =
4G,E,3) 6 smry + 5 log ( sinh (g(ﬂ' — npo))> 0o = Py,

> Homology constraint: Surfaces must be
smoothly retractable to A.

> © = @4 (red dashed): saddle points of the
area functional exchange dominance®.

» © > @y (black dashed): two disconnected
surfaces = Sa = Sgy + S;.

> Entanglement plateau: S, saturates to

thermal entropy for large sub-regions.
[Hubeny, Maxfield, Rangamani, Tonni [1306.4004]]

1The case ¢ = @4 saturates the Araki-Lieb inequality |Sa — Sg| < Saus-
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Schwarzschild Black Brane

AdSy+1 black brane geometries are holographic duals of thermal states with
T=2VMin CFT4 on M.
g — L (7(1 — Mz%)dt® — 2dzdt + d>_<'2)

z2

» surfaces remain always outside the BH horizon.
» We recover the universal area law for small regions (¢ < zj).

» For large regions (£ > z;) the vacuum (M = 0) gives the area law and

thermal states (M # 0) the volume law®.
— vacuum — thermal

S()
405

400

395

390

2 4 6 8

5The plot is for the entanglement densities in the 1-dim subspace of the stripe
region, i.e. the are is O-dimensional and the Volume is 1-dimensional.
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Vaidya Quench

» Vaidya-AdSys+1 geometry in Eddington-Finkelstein coordinates
1 1
ds’ = (—(1 — M(t)2%) d* — 2dzdt + d>?2) M(e) = 5 (1 + tanh(at))
> Quench: Infalling matter shell = sudden injection of energy in CFT
> Entanglement Tsunami:
t < Peq: ASA(t) = F5eArea(0A) + ... , where feq = T
Beq K t < £/2:  ASA(t) = veSeqArea(0A)t + . ..

E>£/2: Sa(t) = saVol(94) [Liu, Suh [1305.7244]]

— =3 — =4 — I=5 — I=6
Sieg
25

2.0
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