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Abstract
The primary objective of this work was the implementation of a measure-
ment routine for the two-particle Green’s function in a Continuous-Time
Quantum Monte Carlo code. We start with a brief discussion of the Hub-
bard model and the Anderson impurity model in their multi-band realiza-
tions. After that a short introduction to Dynamical Mean-Field Theory
is given. A general discussion of the Continuous-Time Quantum Monte
Carlo method is followed by a detailed exposition of the hybridization al-
gorithm. The major advantage of the hybridization algorithm, compared to
the well established Hirsch-Fye method is, that complex multi-band interac-
tions with off-diagonal elements in Fock space like the Coulomb interaction
can be implemented straight forwardly. Furthermore one is not restricted
to a finite number of bath sites as in the Exact-Diagonalization method.
Based on the action formulation of the Anderson impurity model we give
a formal derivation of the Continuous-Time Quantum Monte Carlo mea-
surement formulas for the single-particle and two-particle Green’s function.
The derived formulas for are used to implement and test a measurement
routine for the two-particle Green’s function in an existing code. We com-
pare numerical results from our routine to those from a Hirsch-Fye and an
Exact-Diagonalization code. As a first application we calculate the local
spin susceptibility at the metal-insulator Mott-transition of the half-filled
single-band Hubbard model. An extensive treatment of the Coulomb in-
teraction Hamiltonian can be found in the appendix.
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Zusammenfassung
Das primäre Ziel dieser Arbeit bestand in der Implementierung einer Mess-
routine für die Zweiteilchen-Greensfunktion in einem Continuous-Time Quan-
ten Monte Carlo Code. Ausgehend von einer kurzen Erläuterung des Hubbard-
Modells und des Anderson-Störstellen-Modells mit besonderem Augenmerk
auf deren Mehrband-Ausführungen folgt eine Einführung in die Dynamische
Molekularfeldtheorie. Nach einer allgemeinen Erörterung der Continuous-
Time Quanten Monte Carlo Methode findet sich eine detaillierte Diskussi-
on des Hybridisierungsalgorithmus. Als wesentlicher Vorteil des Hybridisie-
rungsalgorithmus im Vergleich zum Hirsch-Fye-Algorithmus zeigt sich, dass
Mehrbandwechselwirkungen die nicht vom Dichte-Dichte Typ sind (z.B.
Coulomb Wechselwirkung) relativ einfach implementiert werden können.
Ausgehend von der Wirkung des Anderson-Störstellen-Modells präsentie-
ren wir eine formale Herleitung der Messformeln für die Ein- und Zwei-
Teilchen Greensunktion. Basierend auf diesen Formeln wurde eine Routine
zum Messen der Zweiteilchen-Greensfunktion implementiert und getestet.
Anschließend wurden die numerischen Ergebnisse von dieser Routine mit
den Ergebnissen des Hirsch-Fye Algorithmus und der Methode der Exakten
Diagonalisierung verglichen. Als erste Anwendung unserer Routine wird die
Spinsuszeptibilität in der Nähe des Metall-Isolator-Mott-Überganges des
halbgefüllten Hubbard Modells berechnet. Im Anhang findet sich eine aus-
führliche Herleitung der Matrix-Elemente des Coulomb Hamiltonoperators.
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Chapter 1

Introduction

The goal of computational material science (CMS) is the numerical simu-
lation of physical phenomena in the field of condensed matter physics. It
is a remarkable fact, that for a wide variety of materials electronic cor-
relation effects due to the Coulomb repulsion play an insignificant role.
These materials can be described in the framework of density functional
theory (DFT). DFT, however, fails when the material behavior is governed
by strong electronic correlation effects. Narrow bands and highly located
overlapping orbitals are typical characteristics of such systems. In this case
the mean-field description of electronic correlations in form of an electron
gas is too crude and one has to take electron-electron interactions explicitly
into account. Fermionic lattice models such as the Hubbard model provide
an adequate way to describe these strongly correlated electron systems.
The access to numerical solutions of such quantum mechanic lattice mod-
els is, however, restricted to a small number of lattice sites and bands due
to the exponential growth of the corresponding Hilbert space. In dynamical
mean-field theory (DMFT) a lattice model is mapped onto a numerically
solvable impurity model and a self-consistency condition. While reaching
self-consistency generally takes only a small number (O[101]) of iterations,
efficiently solving multi-band impurity models is numerically challenging
and still a task of active research. Recently developed Continuous-Time
Quantum Monte Carlo (CTQMC) solvers, as the hybridization algorithm
(CT-HYB), exhibit a number of advantages compared to previous Exact-
Diagonalization (ED) and Hirsch-Fye (HF) solvers, which motivated this
work.

This thesis is structured as follows. In the first part of Chapter 2 we
introduce several impurity models with different local interaction types.
In the framework of statistical quantum mechanics the solutions to such
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models are expressed in terms of many-particle Green’s functions. In the
second part of Chapter 2 we derive some important analytical properties
of single- and two-particle Green’s functions.

In Chapter 3 we give an introduction to DMFT. We renormalize the
lattice Hamiltonian in infinite dimensions and argue diagrammatically the
locality of the corresponding self-energy in this limit. We derive the DMFT
self-consistency scheme which is of central importance for numerical simu-
lations.

Chapter 4 is about the Continuous-Time QuantumMonte Carlo method
in the hybridization expansion. We derive in detail the hybridization ex-
pansion of the impurity model partition function. After that we describe
how this infinite series is sampled in a Monte Carlo procedure. Finally we
use functional methods to derive the Monte Carlo measurement formulas
of the single- and two-particle Green’s function.

The results from our numerical simulations are presented and discussed
in Chapter 5. Here we compare the DMFT two-particle Green’s functions
and generalized susceptibilities calculated with the CTQMC method to
those from the HF and ED solver. We benchmark the performance of our
routine for several values of the interaction strength and temperature. As a
first application we calculate the local spin susceptibility in the vicinity of
the metal-insulator Mott-transition of the frustrated single-band Hubbard
model.

In Chapter 6 a conclusion is drawn and prospective applications are
suggested.

In the Appendix we collect several derivations concerning the full Coulomb
Hamiltonian, the hybridization expansion and bare Green’s functions of the
Anderson impurity model (AIM) and the Hubbard model. A short descrip-
tion of the Hirsch-Fye method is also included in the Appendix.



Chapter 2

Microscopic Description of
Strongly Correlated Electron
Systems

A macroscopic crystal is a composition of a huge number (O[1023]) of in-
teracting microscopic constituents, namely electrons and ions, where the
latter are arranged on a lattice with a spacing of typically few Å. This
makes a quantum mechanical treatment necessary.

Ab Initio Hamiltonian. A formal description from first principles in
terms of a many-body Hamiltonian is in general possible:

H =
∑
i

∇2
Ri

2Mi
+ 1

2
∑
i 6=j

e2ZiZj
|Ri −Rj |︸ ︷︷ ︸

Hn

+
∑
i

∇2
ri

2me︸ ︷︷ ︸
T

+ 1
2
∑
i 6=j

e2

|ri − rj |︸ ︷︷ ︸
Vee

−
∑
i,j

e2Zj
|ri −Rj |︸ ︷︷ ︸
Vion

.

(2.1)
This ab initio Hamiltonian contains purely ionic contributions (Hn) where
Mi denotes the mass and eZi the charge of the ion with position vector
Ri; the purely electronic terms T and Vee accounting for the kinetic and
Coulomb energy of the electrons with position vector ri and charge e; and
finally the Coulomb term Vion describing the interaction between the elec-
trons and the ions. Due to the Coulomb interaction terms, a closed solution
of the corresponding Schrödinger equation for a macroscopic system is not
available. Next we discuss some approximations that make at least a nu-
merical solution possible.
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Born-Oppenheimer Approximation. Many properties of solids are
primarily the result of the complicated interplay between the electrons
only. In the Born-Oppenheimer approximation [1], dating back to 1927,
the electrons are, due to their small mass, supposed to be in an instanta-
neous equilibrium with the much heavier slowly moving ions. This allows
to employ a product ansatz for the total many-body wave function in terms
of a purely ionic and a purely electronic wave function Φ(~r, ~R), where in
the latter only a parametric dependence of the ionic degrees of freedom
remains:

[T + Vee + Vion]Φ(~r, ~R) = E(~R)Φ(~r, ~R). (2.2)

Density Functional Theory. For a wide variety of materials density
functional theory in its local density approximation (LDA) turned out to
be an unexpectedly successful approach of solving Eq.(2.2). DFT is based
on the theorems first published by Pierre Hohenberg and Walter Kohn
[2] in 1964, who state that for a given external potential Vion and fixed
electron number N =

∫
n(r)dr, the ground state energy E of a many-

electron system is an unique functional of the electron density n(r):

E[n] = Ekin[n] + Exc[n] + EH [n] + Eion[n], (2.3)

which attains its minimum relative to variations δn(~r) at the equilibrium
density n0(r):

E[n0] = min
{
E[n]

∣∣∣ N =
∫
n(~r)d~r

}
. (2.4)

The Hartree term EH [n] = 1
2
∫
d3rd3r′Vee(r − r′)n(r)n(r′) and the ionic

term Eion[n] =
∫
d3rVion(r)n(r) are easily expressible through the electron

density. This is, however, not possible for the kinetic part which is therefore
substituted by the kinetic energy Ekin[n] of the non-interacting electron gas
and the exchange-correlation functional Exc[n] accounting for the difference
to the exact kinetic energy of the interacting electron system and for the
missing exchange part in the Hartree term. Since all the material specific
information is contained in Vion, the functional Exc[n] is the same for each
many-electron system. Unfortunately the exact form of Exc[n] is unknown.
In LDA the unknown functional Exc is approximated with the one of the
homogeneous electron gas (Jellium model):

Exc[n] LDA≈ −3e2

4π

∫
d3r n(~r) 3

√
3π2n(~r). (2.5)

In 1965 Walter Kohn and Lu Jeu Sham [3] state that the ground state elec-
tron density n0(~r) =

∑N
i=1 |φi(~r)|2 is expressible in terms of the N auxiliary
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single-particle wave functions φi(~r) of lowest energy from the Kohn-Sham
equations[

− 1
2me

∆ + Vion +
∫

dr′Veen(r′) + δExc[n]
δn

]
φi(~r) = εiφi(~r), (2.6)

which are obtained by varying Eq.(2.3) w.r.t. φi and fixed N . This al-
lows us to use the effective single-particle wave functions φi in an iterative
minimization procedure to find the electron density consistent with the
Kohn-Sham equations.

There are, however, material classes where the LDA is inappropriate
and leads to qualitatively wrong predictions. These are typically materials
with partially filled d or f shells, where two electrons may occupy one of
the narrow orbitals on the same lattice site and correlation effects become
non-negligible.

Lattice models. A different approach to the many-body problem for
electrons is to start with a model Hamiltonian, rather than using the com-
plicated ab initio Hamiltonian from Eq.(2.1). The intention is to restrict
the model to a parametric description of the very essential mechanisms
only, namely the electron hopping from one lattice site to another and the
Coulomb interaction which is assumed to be strongly screened and there-
fore purely local. A general form of such a lattice model Hamiltonian may
be written as follows:

H = −
∑
ijlσ

tijc
†
ilσcjlσ +

∑
ilmnoσσ′

Ulmnoc
†
ilσcimσc

†
inσ′cioσ′ . (2.7)

Here c†ilσ and cilσ are operators creating and annihilating an electron, with
the indices i, l and σ for lattice site, orbital and spin, correspondingly; tij
denotes the hopping amplitude between the lattice sites i and j; Ulmno are
the parameters accounting for the local Coulomb interaction. Probably the
most prominent representative is the single-band Hubbard model:

H = −t
∑
〈i,j〉σ

c†iσcjσ + U
∑
i

ni↑ni↓, (2.8)

which was in 1963 proposed independently by J. Hubbard [4], M.C. Gutzwiller
[5] and J. Kanamori [6]. In the Hamiltonian of Eq.(2.8) the hopping is re-
stricted to the nearest neighbor sites 〈i, j〉 and each lattice site can be
occupied at most by two electrons of opposite spin, thus the model is char-
acterized by just two parameters t and U . Although the model gives a
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simple impression, there only exist analytical solutions in one dimension
and a numerical exact approach in infinite dimensions, namely dynamical
mean-field theory, which we discuss in the third chapter.

In summary, LDA is inappropriate to account for many-body effects
originating from strong electronic correlation. In this case DMFT gives a
good description of the local dynamics. In Chap. 3 we will see that solving
a lattice model in DMFT essentially amounts to finding a self-consistent
solution of an impurity model. Therefore we start with a description of
such quantum impurity models in the first section of this chapter.

The solution of an impurity model is usually expressed in terms of
many-particle Green’s functions. We will define them and develop some of
their analytic properties in the subsequent section.

2.1 Quantum Impurity Models
A quantum impurity model represents an atom in a host medium with
which it can exchange electrons. The impurity is typically characterized by
a small number of discrete degrees of freedom, whereas the host medium or
bath is represented by a non-interacting infinite system with a continuous
spectrum. The Hamiltonian of a multi-band impurity model may be written
in the following form:

H =

H0
loc︷ ︸︸ ︷

µ
∑
α

c†αcα +

HI
loc︷ ︸︸ ︷∑

αβγδ

Uαβγδc†αcβc
†
γcδ +

+
∑
k,α

εka
†
kαakα︸ ︷︷ ︸

Hbath

+
∑
k,α

(
V α
k a
†
kαcα + h.c.

)
︸ ︷︷ ︸

Hhyb

,
(2.9)

where c†α (cα) denote creation (annihilation) operators of electrons on the
impurity site characterized by the combined1 spin and band index α. These
electrons are correlated via the local interaction Uαβγδ. The chemical po-
tential µ accounts for the level energy. The terms containing only the
impurity operators are combined in the local Hamiltonians HI

loc and H0
loc,

where the superscripts stand for the interacting and non-interacting part,
correspondingly. The operators a†kα (akα) create (annihilate) states with
momentum k and combined spin-band index α. The band energy of these

1In order to avoid cluttering up the notation unnecessarily we write a single index on
operators like cα when we actually mean clσ with l and σ denoting the indices for band
and spin correspondingly.
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uncorrelated bath states is given by the dispersion relation εk. The terms
containing only the bath operators are collected in the bath Hamiltonian
Hbath. The mixed terms, characterized by the hybridization matrix V α

k ,
account for the electron hopping from the impurity into the bath and vice
versa. These are contained in Hhyb which we have here chosen to be block-
diagonal in α, although more complicated mixing terms may be considered
as well.

Single Impurity Anderson Model (SIAM). Obviously the simplest,
non-trivial, special case of Eq.(2.9) is to allow only for a single orbital, such
that the local interaction simplifies drastically:

H = µ
∑
σ

nσ + Un↑n↓ +
∑
k,σ

εka
†
kσakσ +

∑
k,σ

(
V σ
k a
†
kσcσ + h.c.

)
. (2.10)

The interaction matrix simplifies to a single number U and the multi-index
is reduced to a spin index σ. This Hamiltonian was first proposed by
Anderson [7] in 1961 who used it to describe the properties of magnetic
impurities in a non-magnetic host metal.

Slater-Kanamori Model. A more sophisticated choice, involving sev-
eral correlated bands, is the Slater-Kanamori model [8, 9] where the local
Hamiltonian is given by:

HI
loc =

∑
a

Una↑na↓ +
∑
a>b,σ

[
U ′naσnaσ̄ + (U ′ − J)naσnbσ

]
−
∑
a6=b

J
(
c†a↓c

†
b↑cb↓ca↑ + c†b↓c

†
b↑ca↓ca↑ + h.c.

)
.

(2.11)

Above, U and U ′ denote the intra- and inter-orbital Coulomb interaction,
respectively. The exchange coefficient J , taking Hund coupling into ac-
count, with U ′ chosen such that U ′ = U − 2J . The Slater-Kanamori
Hamiltonian is chosen such that the operator combination in the Hund
term is SU(2) symmetric, i.e. it is invariant under rotations in spin space.
It is, however, not diagonal in spin-band space. In the Hamiltonian of
Eq.(2.11) only scattering events between equal and different orbitals are
distinguished, but it makes no difference which orbitals are involved, re-
sulting in a rather high degeneracy of the different energy levels (see Figure
2.1).

Spherical Symmetric Coulomb Model. It is also possible to use the
’true’ 1/r potential to model the local interaction. Therefore we employ
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the scattering amplitudes associated with the spherical symmetric Coulomb
potential represented in an eigenbasis of the central field problem. This
results, compared to the Kanamori interaction, in a much less degenerated
eigenvalue spectrum (see Figure 2.1). The local Hamiltonian, which we
derive in detail in Appendix A.3, becomes:

HI
loc =

∑
mnpqσσ′

δm+n,p+q(−1)m+p(2l − 1)2c†mσc
†
nσ′cpσcqσ′×

2l∑
k=0

(
l l k
0 0 0

)2(
l l k
−m p m− p

)(
l l k
−n q n− q

)
Rk.

(2.12)

The angular dependent part is analytically expressible in terms of Wigner

3-j symbols
(
a b c
d e f

)
(see Appendix A.1). The remaining radial part Rk,

known as Slater integrals, become parameters of the Hamiltonian which de-
scribes the interaction in a shell denoted by the angular momentum quan-
tum number l. As we show in Appendix A.3, the sum index k ≤ 2l has
to run over even values only. The band index m of an operator cmσ is
assigned to the quantum number associated with the z-component of the
angular momentum operator and is therefore restricted by the condition
−l ≤ m ≤ l. Hence, only models with 1,3,5,. . . orbitals are compatible with
this kind of local interaction, and 2,4,6,. . . orbitals are not allowed. The
simplest Coulomb model, different from the SIAM, is therefore one with
three bands. The interaction distinguishes between particular bands and
the number of required parameters Rk depends on the number of bands
taken into account.

2.2 Finite Temperature Green’s Functions
In the context of many-particle quantum mechanics a n-particle Green’s
function, or 2n-point function, may be defined as follows:

G
(n)
α1α′1...αnα

′
n
(t1, t′1, . . . , tn, t′n) = (−i)n〈Tcα1(t1)c†α′1(t′1) . . . cαn(tn)c†α′n(t′n)〉.

(2.13)
The operators are given in Heisenberg representation:

cα(t) := eitHcαe
−itH ,

c†α(t) := eitHc†αe
−itH .

(2.14)

The combined index α contains a spin index σ and may contain other
indices, e.g., for a discrete energy level a and a site index i taking the
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Coulomb Kanamori

3

4

5

6

7

8

9

10

M
ul
tip

le
t
en
er
gy

(e
V
)

3F(21) 3.239eV

1D(5) 4.897eV
3P(9) 5.238eV

1G(9) 5.830eV

1S(1) 9.642eV

S=1(30) 3.839eV

S=0(14) 5.497eV

S=0(1) 9.642eV

(a) d2 configuration

Coulomb Kanamori

10

11

12

13

14

15

16

17

18

19

4F(28) 10.918eV

2P(28) 13.605eV
2D(10) 13.840eV

2F(14) 15.603eV

2D(10) 18.285eV

4P(12) 12.916eV
2G(18) 12.939eV

S= 3
2 (40) 11.517eV

S= 1
2 (70) 14.005eV

S= 1
2 (10) 17.321eV

(b) d3 configuration

Figure 2.1: Energy levels of (a) d2 and (b) d3 configuration. All states
having the same number of electrons and angular momentum quantum
number are said to belong to the same configuration. A d2 configuration,
for example, denotes a d-orbital occupied with 2 electrons. The energy
levels of the Coulomb model are labeled according to the Russel-Saunders
term scheme: 2S+1L. For the Kanamori levels the total spin serves as label.
The degeneracy is written in parentheses beside the term name. Compared
to the Kanamori model, the degeneracy of several energy levels is lifted in
the Coulomb model.
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discrete spacial dependence on a lattice into account:

cα(t) = ciσa(t). (2.15)

The thermal expectation value is defined as:

〈. . .〉 = 1
Z

Tr
(
e−βH . . .

)
(2.16)

with the partition function Z given by:

Z = Tr e−βH , (2.17)

and the inverse temperature β = 1
T . For operators A(t1), B(t2) which obey

the fermionic anti-commutation relations, the time-ordering symbol T that
appears in Eq.(2.13) is defined as:

TA(t1)B(t2) =
{
A(t1)B(t2) ∀t1 > t2

−B(t2)A(t1) ∀t2 > t1.
(2.18)

In the single-particle case (n = 1) the Green’s function has the physical
interpretation of a transition amplitude of an additional electron that is
added to the system at time t1 and removed at t2 when t1 < t2. For t1 > t2
it describes the propagation of a hole.

At finite temperature a formulation in imaginary time rather than real
time turns out to be favorable. This can be seen by comparing the Boltz-
mann weight appearing in Eq.(2.17) with the exponentials of time evolution
in Eq.(2.14):

e−
H
T → e−βH , eitH → e−τH . (2.19)

The formal equivalence of inverse temperature β and imaginary time τ ≡
−it, motivates the following Heisenberg like operator representation:

cα(τ) := eτHcαe
−Hτ ,

c+
α (τ) := eτHc†αe

−Hτ ,
(2.20)

which allows to treat the Boltzmann factor and the now imaginary time
evolution on equal footings. It is important to note that the conjugate
imaginary time operator c+

α (τ) is not the hermitian conjugate of cα(τ):

c†α(τ) =(eτHcαe−Hτ )†

=e−Hτ c†αeτH 6= c+
α (τ).

(2.21)
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We define the n-particle imaginary time Green’s function as follows:

G
(n)
α1α′1...αnα

′
n
(τ1, τ

′
1, . . . , τn, τ

′
n) = (−1)n〈Tτ cα1(τ1)c+

α′1
(τ ′1) . . . cαn(τn)c+

α′n
(τ ′n)〉,
(2.22)

where the definition of the ordering symbol Tτ is analogous to that of T in
Eq.(2.18).

Single-Particle Green’s Function. A fundamental quantity in describ-
ing quantum mechanical many-body systems is the single-particle Green’s
function as it accounts for the propagation of the excitations in the system.
In accordance to Eq.(2.22) the finite temperature single-particle Green’s
function is given by:

Gαβ(τ1, τ2) := −
〈

Tτ cα(τ1)c+
β (τ2)

〉
. (2.23)

For Hamiltonians without explicit time dependence the Green’s function is
translational invariant in τ :

Gαβ(τ1, τ2) = − 1
Z

Tr
(
e−βHTτ cα(τ1)c+

β (τ2)
)

= − 1
Z

[
Tr
(
e−βHeτ1Hcαe

−τ1Heτ2Hc†βe
−τ2H

)
θ(τ1 − τ2)

− Tr
(
e−βHeτ2Hc†βe

−τ2Heτ1Hcαe
−τ1H

)
θ(τ2 − τ1)

]
= − 1

Z

[
Tr
(
e−βHe(τ1−τ2)Hcαe

−(τ1−τ2)Hc†β

)
θ(τ1 − τ2)

− Tr
(
e−βHc†βe

(τ1−τ2)Hcαe
−(τ1−τ2)H

)
θ(τ2 − τ1)

]
= Gαβ(τ1 − τ2, 0) ≡ Gαβ(τ).

(2.24)

We have employed the cyclic property of the trace and the θ-functions
implement the time ordering Tτ .

As a next step we show that the single-particle Green’s function is
anti-periodic, and thus can be written in terms of a Fourier series. For this
purpose we first evaluate the trace Eq.(2.24), using a complete set of energy
eigenstates {|n〉}:

Gαβ(τ) = − 1
Z

∑
n

[
e−(β−τ)En〈n|cαe−τHc†β|n〉θ(τ)

−e−(β+τ)En〈n|c†βe
τHcα|n〉θ(−τ)

]
.

(2.25)

For an infinite system the spectrum is unbounded from above and the sum
in Eq.(2.25) only converges if τ is restricted to the finite range:

τ ∈ [−β, β], (2.26)
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such that contributions corresponding to large values of En are exponen-
tially damped. To prove the anti-periodicity, we take a closer look at the
explicit expression for G(τ + β) in the case where τ < 0:

Gαβ(τ + β) =− 1
Z

Tr
(
e−βHe(τ+β)Hcαe

−(τ+β)Hc†β

)
=− 1

Z
Tr
(
eτHcαe

−(τ+β)Hc†β

)
=− 1

Z
Tr
(
e−βHc†βe

τHcαe
−τH

)
=−Gαβ(τ).

(2.27)

By using again the cyclic property of the trace we obtain the important
result that the Green’s function is anti-periodic with period β and can
therefore be expressed as Fourier series:

Gαβ(τ) = 1
β

∞∑
n=−∞

e−iνnτGαβ(iνn). (2.28)

Due to the anti-periodicity of Gαβ(τ) the series must involve only odd
Matsubara frequencies:

νn = (2n+ 1)π
β

with n ∈ Z. (2.29)

The Fourier coefficients Gαβ(iνn) are given by the inverse transformation:

Gαβ(iνn) =
β∫

0

dτ eiνnτGαβ(τ). (2.30)

At τ = 0 the single-particle Green’s function is discontinuous. Using the
linear property of the trace we can calculate the jump size ∆G of the
discontinuity:

∆G ≡ lim
τ→+0

(
Gαβ(τ)−Gαβ(−τ)

)
=〈cαc†β〉+ 〈c†βcα〉

=〈{cα, c†β}〉 = δαβ.

(2.31)

As we will see, this discontinuity translates into a corresponding discon-
tinuity of the two-particle Green’s function. In Figure 2.2 we illustrate
some of the analytical features of the single-particle Green’s function for
the example of the Hubbard model.
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Figure 2.2: Single-particle Green’s function of the Hubbard model given
in Eq.(2.8) on an infinite dimensional Bethe lattice, for β = 10, at half
and non-half filling. At half filling (µ = U/2) the Green’s function has, in
addition to the anti-periodicity, on [0, β] a symmetry around β/2. In both
cases there is a discontinuity of amplitude one at τ = 0.

Two-Particle Green’s Function. According to Eq.(2.22) the two-particle
Green’s function is defined as:

Gα(τ1, τ2, τ3, τ4) :=
〈

Tτ cα1(τ1)c+
α2(τ2)cα3(τ3)c+

α4(τ4)
〉
. (2.32)

Due to the same arguments as for the single-particle Green’s function the
two-particle Green’s function is translational invariant in all four τ argu-
ments, which allows to set one argument to zero. We choose to subtract τ4
form each τi and change the indices (τi − τ4 → τi) which results in:

Gα(τ1, τ2, τ3) :=
〈

Tτ cα1(τ1)c+
α2(τ2)cα3(τ3)c†α4

〉
. (2.33)

The two-particle Green’s function is β anti-periodic in each argument:

Gα(. . . , τi, . . .) = −Gα(. . . , τi − β, . . .), (2.34)

with the restriction:
τi ∈ [−β, β]. (2.35)

The Fourier expansion in terms of Matsubara frequencies reads:

Gα(τ1, τ2, τ3) = 1
β3

∑
{νi}

e−i(ν1τ1−ν2τ2+ν3τ3)Gα(ν1, ν2, ν3). (2.36)
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The Fourier coefficients are obtained by the inverse transformation:

Gα(ν1, ν2, ν3) =
β∫

0

dτ1

β∫
0

dτ2

β∫
0

dτ3 e
i(ν1τ1−ν2τ2+ν3τ3)Gα(τ1, τ2, τ3). (2.37)

If any two τ ’s are equal, the two-particle Green’s function has a disconti-
nuity. We demonstrate this for the special case where τ ≡ τ1 = τ2 > τ3 > 0
with some ε > 0:

∆Gα(τ3) ≡ lim
ε→0

(
Gα(τ + ε, τ, τ3)−Gα(τ − ε, τ, τ3)

)
= lim
ε→0

(
〈cα1(τ + ε)c+

α2(τ)cα3(τ3)c†α4〉+ 〈c+
α2(τ)cα1(τ − ε)cα3(τ3)c+

α4〉
)

=〈eHτ cα1c
+
α2e
−Hτ cα3(τ3)c+

α4〉+ 〈eHτ c+
α2cα1e

−Hτ cα3(τ3)c+
α4〉

=〈eHτ cα1c
+
α2e
−Hτ cα3(τ3)c+

α4〉+ 〈eHτ (δα1α2 − cα1c
+
α2)e−Hτ cα3(τ3)c+

α4〉
=δα1α2〈cα3(τ3)c+

α4〉
(2.38)

Because of the implicit time ordering the second term in the second line
changes sign. In the fourth line we used the fermionic equal time anti-
commutation relation: {cα1 , c

+
α2} = δα1α2 .

It is easy to show that this discontinuity comes entirely from the dis-
connected part of the full Green’s function, i.e. it is inherited from the
single-particle Green’s function. The disconnected part Dα(τ1, τ2, τ3) of
the full two-particle Green’s function is defined as:

Dα(τ1, τ2, τ3) : = 〈Tτ cα1(τ1)c+
α2(τ2)cα3(τ3)c+

α4〉

= Gα1α2(τ1 − τ2)Gα3α4(τ3)−Gα1α4(τ1)Gα3α2(τ3 − τ2)
(2.39)

Again we look at the special case where τ ≡ τ1 = τ2 > τ3 > 0 with ε > 0:

∆Dα(τ3) ≡ lim
ε→0

(
Dα(τ + ε, τ, τ3)−Dα(τ − ε, τ, τ3)

)
= lim
ε→0

(
〈cα1(τ + ε)c+

α2(τ)〉〈cα3(τ3)c+
α4〉+ 〈cα1(τ + ε)c+

α4〉〈c
+
α2(τ)cα3(τ3)〉

+ 〈c+
α2(τ)cα1(τ − ε)〉〈cα3(τ3)c+

α4〉 − 〈cα1(τ − ε)c+
α4〉〈c

+
α2(τ)cα3(τ3)〉

)
=δα1α2〈cα3(τ3)c+

α4〉
(2.40)
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The result for ∆Dα(τ3) is exactly what we found for the case of the full
Green’s function ∆Gα(τ3), so we conclude that the discontinuity is en-
tirely inherited from the disconnected part and the fully connected part
is therefore continuous. The above example demonstrates that the step
size includes a Kronecker delta originating form the anti-commutation re-
lations between the operators with equal values of τi. This immediately
makes clear that there is no discontinuity when the corresponding anti-
commutator vanishes. With the knowledge that the single-particle Green’s
function makes a jump at τ = 0, the discontinuity structure of ∆Gα(τ3) is
manifest. The two-particle Green’s function has a discontinuity when the
argument of any single-particle Green’s function in Dα(τ1, τ2, τ3) vanishes.
Deriving the results for all other combinations works in complete analogy
as above.

For the paramagnetic2, single-orbital case with conservation of total
spin the indices on the two-particle Green’s function reduce to:

Gσσ′(τ1, τ2, τ3) =
〈

Tτ cσ(τ1)c+
σ (τ2)cσ′(τ3)c+

σ′

〉
. (2.41)

The Generalized Susceptibility. A quantity closely related to the two-
particle Green’s function is the generalized susceptibility:

χα(τ1, τ2, τ3, τ4) ≡〈Tτ c
+
α1(τ1)cα2(τ2)c+

α3(τ3)cα4(τ4)〉
− 〈Tτ c

+
α1(τ1)cα2(τ2)〉 〈Tτ c

+
α3(τ3)cα4(τ4)〉

=Gα(τ1, τ2, τ3, τ4)−Gα1α2(τ1, τ2)Gα3α4(τ3, 0)
(2.42)

We restrict our discussion to the single-band case, where due to time trans-
lational symmetry, SU(2)-symmetry and crossing symmetry (for details see
[10]) the generalized susceptibility takes the simpler form:

χσσ′(τ1, τ2, τ3) ≡ Gσσ′(τ1, τ2, τ3)−Gσ(τ1, τ2)Gσ′(τ3, 0). (2.43)

The transformation to frequency representation may be defined in two dif-
ferent ways, referred to as particle-hole (ph) and particle-particle (pp) rep-
resentation:

χνν
′ω

ph,σσ′ :=
β∫

0

dτ1

β∫
0

dτ2

β∫
0

dτ3 e
−iντ1ei(ν+ω)τ2e−i(ν

′+ω)τ3χσσ′(τ1, τ2, τ3),

(2.44)
2Flipping all spins simultaneously leaves the system unchanged.
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Figure 2.3: The particle-hole case (a) corresponds to the scattering process
between a hole of energy −ν and an electron of energy ω+ν. The particle-
particle case (b) corresponds to a scattering process between two electrons
with energy ν ′ and ω − ν ′. In both processes the total energy of ω is
transfered (this figure is adopted from [10]).

χνν
′ω

pp,σσ′ :=
β∫

0

dτ1

β∫
0

dτ2

β∫
0

dτ3 e
−iντ1ei(ω−ν

′)τ2e−i(ω−ν)τ3χσσ′(τ1, τ2, τ3),

(2.45)
where ν and ν ′ are fermionic Matsubara frequencies (ν, ν ′ = π

β (2n+ 1), n ∈
Z) and ω denotes a bosonic Matsubara frequency (ω = 2nπ

β , n ∈ Z). The
physical motivation behind these two frequency conventions is discussed in
Figure 2.3. Comparing the exponentials in Eq.(2.44) and Eq.(2.45) makes
clear that χpp can be obtained from χph by a mere frequency shift in ω:

χνν
′ω

pp,σσ′ = χ
νν′(ω−ν−ν′)
ph,σσ′ . (2.46)



Chapter 3

Dynamical Mean-Field
Theory

The standard approach to get approximate solutions of quantum mechan-
ical lattice models is to employ a perturbative expansion around an ana-
lytically tractable limit. In the Hubbard Hamiltonian of Eq.(2.8) two such
limits are manifest, namely the atomic limit, where the hopping parameter
t is assumed to be small compared to the local interaction U and perturba-
tion theory in t applies around t = 0, and the opposite case, the free limit,
where U is assumed to be small compared to t and a perturbative expansion
in U is applicable around U = 0. However, neither of both limits is justi-
fied if the energy scales of kinetic and interaction energy are of the same
order of magnitude. But it is just the equivalence of these energy scales,
which makes a non-trivial interplay between itinerancy and localization of
the electrons possible and gives in turn rise to such interesting many-body
effects like Mott insulation. Therefore Metzner and Vollhardt [11] intro-
duced the limit of infinite dimensions as an alternative. In this limit the
inverse dimension of space serves as small parameter. A proper rescaling
of the lattice Hamiltonian results in a non-trivial limit without making any
a priori assumptions about the relative size of U and t. This makes pa-
rameter regions accessible where U and t are on the same energy scale.
Müller-Hartmann [12] showed that in the limit of infinite dimensions the
self-energy becomes purely local which results in a tremendous reduction in
the variety of non-vanishing contributions in its diagrammatic expansion.
This in turn allows to reduce the lattice model to an effective impurity
model which needs to be solved self-consistently, such that its interaction
with the effective bath is equivalent to the dynamics of the underlying lat-
tice model. This amounts to a huge decrease of complexity, since there

17
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exist numerical exact methods, like Quantum Monte Carlo algorithms, to
obtain solutions of impurity models.

3.1 The Limit of Infinite Dimensions
Let us start with analyzing the scaling of the Hubbard Hamiltonian Eq.(2.8)
in the limit of d → ∞. We restrict the following discussion to the param-
agnetic1, single-band case which is sufficient to demonstrate the essential
steps without cluttering up the notation. The generalization to the multi-
orbital lattice Hamiltonian of Eq.(2.7) is straight forward. Since the lattice
Hamiltonian includes a sum over neighboring lattice sites, it is convenient
to introduce the coordination number Z of neighbor sites. Z is completely
defined by the lattice type and the number of dimensions and we can (and
will) use 1

Z instead of 1
d as the small parameter. In that way we avoid the

need of referring to a specific lattice type. For the Hubbard Hamiltonian,
which is restricted to nearest neighbor hopping only, Z is given by the num-
ber of nearest neighbor sites. In the case of a bcc lattice in 3 dimensions,
for example, Z = 8. We will now argue diagrammatically how to rescale
the Hamiltonian in terms of Z to get a non-trivial limit for Z → ∞ (or
equiv. d→∞).

Renormalization of the Lattice Hamiltonian. First we take a look at
the local interaction term. This contribution is obviously independent of the
lattice type and the number of dimensions, hence its thermal expectation
value does not scale with Z and stays, without any modifications, finite in
the limit of Z →∞:

limZ→∞
〈
U
∑
i

ni↑ni↓
〉

= const. . (3.1)

The scaling of the hopping term, on the other hand, is non-trivial:

limZ→∞
〈
t
∑
〈i,j〉σ

c†iσcjσ
〉

=
〈
tZ
∑
σ

c†iσcjσ
∣∣∣
〈i,j〉

〉
=∞. (3.2)

The sum over the nearest neighbor sites gives an overall factor of Z and the
expectation value hence diverges. In order to avoid the above divergence
and to obtain a non-zero expectation value we need to renormalize the
hopping amplitude t properly. Our strategy is to postulate the following
scaling:

t = t∗√
Z
, (3.3)

1In the paramagnetic phase G↓ = G↑ holds, so that we can omit the spin index.
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with t∗ = const., and to show a posteriori that our assumption is correct.
First, we notice that the hopping term, that controls the electron prop-
agation between the lattice sites, is closely related to the single-particle
propagator:

Gij(0+) = 〈cic†j〉 = δij − 〈c†icj〉. (3.4)

We have used the definition Eq.(2.23) and the fermionic equal time anti-
commutation relation

{
ci, c

†
j

}
= δij . The propagator Gij(iωn) should better

scale as 1√
Z

in order to compensate in combination with the rescaled t the
factor Z form the summation. To see that this is indeed the case, we first
express G in terms of the bare propagator G0 and the self-energy Σ using
Dyson’s equation:

G−1
ij (iωn) = [G0

ij(iωn)]−1 − Σij(iωn). (3.5)

We are now left over with the task of determining the scaling properties of
G0 and Σ. We derive the required formula for the free propagator G0 in
Appendix B.1 and rewrite it here as:

G0
ij(iωn) = [δij(iωn + t)− t]−1

ij . (3.6)

Using the following matrix identity:

A−1 = 1
detAadjA (3.7)

and looking at the simple case of two lattice sites where the matrix inverse
is easily obtained:

G0
ij(iωn) =

(
iωn −t
−t iωn

)−1

= 1
−ω2

n − t2

(
iωn t
t iωn

)
(3.8)

we find for the off-diagonal terms:

t

−ω2
n − t2

∝ Z−1/2

−1− Z−1 = 1√
Z

1
−1− 1

Z

. (3.9)

The factor 1
−1− 1

Z

scales like a constant for large Z, and we find the following
scaling for the bare propagator:

G0
ij(iωn) ∝ 1√

Z
. (3.10)

The same scaling holds for bigger matrices too as one can expect from
Eq.(3.7). To get an idea of how the self-energy scales we employ a skeleton
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expansion, meaning that we sum up all 1PI diagrams without external legs,

with the internal bare propagators G0
ij(iωn) = i j

replaced by fully

dressed propagators Gij(iωn) = i j
. The local four point interaction

is depicted as U = i i . Diagrammatically this may be written as
follows:

Σij(iωn) = + + . . .+ + . . .

(3.11)
We must not include diagrams like:

= + +. . .+ +. . .

(3.12)
since they include additional self-energy contributions which would lead to
a double counting of several diagrams. The following example should make
this issue clear. Take, for instance, the second diagram on the r.h.s. of
Eq.(3.11) and write it in terms of bare propagators:

= + +. . .+ +. . .

(3.13)
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If we include diagrams like the one on the l.h.s. of Eq.(3.12) we would count
several contributions twice, since the diagrams are already included in the
propagator correction of the second diagram in the skeleton expansion given
in Eq.(3.11). That is why we only include diagrams with internal loops
connected with four legs to the rest. The diagrams having sub-diagrams
which are connected with only two lines to the rest give additional self-
energy contributions and must be excluded to avoid double counting. In
the limit Z → ∞, the scaling in Eq.(3.3) has the important consequence
that the self-energy becomes a purely local quantity:

Σij(iωn) Z→∞−−−−→ δijΣi(iωn) ≡ Σ(iωn), (3.14)

or equivalently, after Fourier transformation, becomes momentum indepen-
dent:

Σ(k, iωn) Z→∞−−−−→ Σ(ω). (3.15)

To better understand this important result we take a look at the first dia-
gram on the r.h.s of Eq.(3.13) in the case where the three bare propagators
have different site indices. We know that the bare propagators scale like
Z−1/2 resulting in an overall scaling of Z−3/2, thus the contribution of the
diagram vanishes for Z →∞, unless it becomes local i.e. i = j:

[
ji

ji
∝
( 1√

Z

)3
]∣∣∣∣∣
i 6=j

Z→∞−−−−→

ii

ii
. (3.16)

From simple power counting follows the general rule, that when ever two
vertices are connected by at least three propagators they must carry the
same site index. The same arguments hold for the other diagrams in the
skeleton expansion such that only local diagrams yield non-vanishing contri-
butions and thus the self-energy becomes local for Z →∞. The self-energy
contributions, however also include diagrams with different site indices as
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can be seen from the following diagram:

ii

j j

j j

ii
∝
( 1√

Z

)2
. (3.17)

It describes a process including electrons traveling from site i to j and
returning after some time to site i. These retardation effects, also referred to
as local quantum fluctuations, are the origin of the frequency dependence of
the self-energy. The underlying skeleton diagram is, however, purely local.
Now that we have convinced ourselves that the self-energy does not scale
with Z, a look at Eq.(3.5) makes clear that the local dressed propagator
scales in the same way as the bare propagator:

Gii(iωn) ≡ G(iωn) ∝ 1√
Z
, (3.18)

which verifies our assumption in Eq.(3.3). We want to emphasize that in
infinite dimensions the locality of the self-energy and neglecting momentum
conservation are exact results and only become an approximation when
applied to a finite dimensional problem. One might ask what if we include
non-local interactions? It turns out that all their contributions, except the
purely static Hartree term (first diagram in Eq.(3.11)) vanishes for d→∞
and only purely local interactions remain dynamical [13].

3.2 Self-Consistent Mapping onto Impurity Model
The central idea of a mean-field theory is to reduce a lattice problem to an
effective single-site problem that needs to be solved self-consistently. A well
known classical example is Weiss mean-field theory for Ising like models.
In the same spirit we are here interested in solving quantum mechanical
lattice models in dynamical mean-field theory. In the limit of infinite di-
mensions the diagrammatic of a lattice model becomes equivalent to that
of an impurity model with the same on-site interaction. This key result,
obtained by Georges and Kotliar [14], provides the basis for a mean-field
description of lattice models.
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Our starting point2 in formulating this mean-field description is the
effective single-site action of the lattice Hamiltonian:

Seff = −
β∫

0

dτ

β∫
0

dτ ′ψ∗(τ)
[
G0(τ − τ ′)

]−1
ψ(τ ′) +

β∫
0

dτ HI
loc(τ). (3.19)

In this context the terminus "effective" shall emphasize that the above ac-
tion emulates the local dynamics of the lattice problem. The bare Green’s
function G0(τ − τ ′) in Seff is commonly referred to as effective Weiss field
and we choose it such that it coincides with that of an impurity model:

G0(iωn) =
(
iωn − µ−∆(iωn)

)−1
, (3.20)

with the hybridization function ∆(iωn) given by:

∆(iωn) =
∑
k

V ∗k (iωn − ε̃k)−1Vk. (3.21)

We give a detailed derivation for the above expression for the bare AIM
Green’s function in Appendix B.2. It is important to note that ε̃k is a
parameter of the effective Weiss field which must not be confused with
the dispersion εk on the original lattice. The effective action of Eq.(3.19),
which is written in terms of Grassmann variables ψ, is equivalent to the
Hamiltonian formulation of the AIM given in Eq.(2.10). We want to stress
that G0(iωn) is not equivalent to the non-interacting local Green’s func-
tion of the lattice model, rather it can be interpreted as the amplitude for
electron exchange with an "effective bath" representing the lattice. In that
way G0(iωn) takes local quantum fluctuations into account and due to its
frequency dependence (or equiv. τ -dependence) we can speak of a "dy-
namical" mean-field theory, although there are no spatial fluctuations. The
bare Green’s function and the interacting Green’s function of the effective
single-site problem are related via Dyson’s equation:[

G0(iωn)
]−1 =

[
G(iωn)

]−1 + Σ(iωn). (3.22)

In order to obtain a closed mean-field description we need to find the corre-
sponding self-consistency equation. Therefore we first express the Green’s
function of the original lattice problem in momentum space:

G(k, iωn) = 1
iωn + µ− εk − Σ(iωn) , (3.23)

2There exist several methods to derive Seff rigorously starting from the action of the
lattice model [15]. A particular readable derivation, using the so called cavity method,
is given in [13].
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where we have used the result from above that in d → ∞ the self-energy
is momentum independent. At this point we see that the lattice topol-
ogy only enters through the dispersion relation εk of the non-interacting
electrons. The local Green’s function follows from Fourier transformation
which becomes for local quantities a simple summation over k:

G(iωn) ≡ Gll(iωn) =
∑
k

e−i(rl−rl)k
1

iωn + µ− εk − Σ(iωn)

=
∑
k

1
iωn + µ− εk − Σ(iωn) .

(3.24)

Since we want the interacting Green’s function G(iωn) of the effective action
such that the hopping between bath and impurity is equivalent to the local
dynamic of the electrons on the lattice, we claim:

G(iωn) ≡ G(iωn). (3.25)

Now we are in the position to write down a self-consistency scheme for cal-
culating the DMFT-Green’s function of the lattice model, or equivalently,
the local self-energy:

1. Make an initial guess for the self-energy (e.g. Σ = 0).

2. Use this self-energy to calculate the local lattice Green’s function:
G(iωn) =

∑
k

1
iωn+µ−εk−Σ(iωn) . This is the point where, via the dis-

persion relation εk, the lattice type comes into play.

3. Dyson’s equation gives the effective Weiss field:
G0(iωn) =

(
G(iωn)−1 + Σ(iωn)

)−1
.

4. Get the solution G(iωn) of the impurity model corresponding to G0(iωn)
and with the same U as in the lattice model. This is the difficult part!

5. Use Dyson’s equation to obtain a new self-energy:
Σ(iωn) = G0(iωn)−1 − G(iωn)−1.

6. Iterate until convergence, i.e. until the difference between new and
old self-energy satisfies a convergence criterion.
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By rewriting Eq.(3.24) in the following way:

G(iωn) =
∞∫
−∞

dε
∑
k

δ(ε− εk)
iωn + µ− ε− Σ(iωn)

=
∞∫
−∞

dε D(ε)
iωn + µ− ε− Σ(iωn) ,

(3.26)

we can make the expression similar to that of a Hilbert transform which
for an arbitrary density of states D(ε) reads:

D̃(ζ) =
∞∫
−∞

dε D(ε)
ζ − ε

. (3.27)

For the reciprocal transformation we write:

R
[
D̃(ζ)

]
= ζ. (3.28)

We are now able to express the self-energy of Eq.(3.23) in terms of the
reciprocal Hilbert transformation of the local Green’s function:

R[G(iωn)] = iωn + µ− Σ(iωn). (3.29)

In that way we obtain the desired self-consistency condition which takes
the form of a functional equation for G0 and G:

G−1
0 (iωn) = −iωn − µ+G−1(iωn) +R[G(iωn)]. (3.30)

The form of the reciprocal Hilbert transformation depends on the lattice
type. For the ∞-dimensional Bethe lattice there exists an analytical ex-
pression for R.

Bethe Lattice. In Figure 3.1 we show the Bethe lattice for various values
of Z. For Z →∞ the Bethe lattice yields a semicircular density of states:

D(ε) =
√

4t2 − ε2
2πt2 , |ε| < 2t. (3.31)

In this limit the reciprocal Hilbert transform reads:

R[G] = t2G+G−1 (3.32)

and the self-consistency equation takes the simple form:

G−1
0 (iωn) = iωn + µ− t2G(iωn), (3.33)
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(a) Z = 2 (b) Z = 3 (c) Z = 4

Figure 3.1: Bethe lattice for (a) Z=2, (b) Z=3 and (c) Z=4. For Z = 2 the
Bethe lattice degenerates to a chain.

such that we do not need to perform the integral over the density of states.
This lattice is primarily of theoretical interest because it results in a sim-
plified self-consistency relation.

In the DMFT limit all the complexity in finding a solution to the lattice
model is essentially reduced to finding a self-consistent solution of an im-
purity model. But solving the AIM is still a highly non-trivial task whose
numerical expense crucially depends on the interaction type, the parameter
regime, and the number of impurity orbitals taken into account.



Chapter 4

Continuous-Time Quantum
Monte Carlo

Solving the AIM on the single- and two-particle level essentially amounts
to the calculation of the corresponding single- and two-particle Green’s
functions. Green’s functions can be derived from a partition function Z.
The partition function is fundamental and thus the object of our central
interest. Once we have a formal expression for Z, it will be straight forward
to obtain the corresponding expression for the Green’s functions.

The basic idea that all CTQMC methods have in common is to split
the Hamiltonian of Eq.(2.10) into two parts:

H = Ha +Hb, (4.1)

and to employ an interaction representation in which the imaginary time
evolution of any operator O is given by Ha:

O(τ) = eHaτOe−Haτ . (4.2)

In this interaction representation the partition function can be expanded
in terms of Hb which results in the following expression (for details see
Appendix C):

Z =Tr
[
e−βH

]
= Tr

[
e−βHaTτe

−
∫ β

0 dτHb(τ)
]

=
∞∑
n=0

β∫
0

dτ1 . . .

β∫
0

dτn
(−1)n

n! Tr
[
Tτe

−(β−τ1)HaHb . . . e
−(τn−1−τk)HaHbe

−τnHa
]
.

(4.3)

The above sum is then sampled simultaneously over all expansion orders n
and all times {τ1, . . . , τn} in a Monte Carlo sampling procedure. Since the

27
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factor 1
n! generically suppresses high expansion orders, there is no artificial

truncation required. Further more, at no point a time discretization is
introduced, so there is no discretization error as in the Hirsch-Fye algorithm
[16].

In the context of impurity models four expansion types, differing pri-
marily in the choice of Hb, have been formulated: CT-INT [17], CT-AUX
[18], CT-J [19] and CT-HYB [20, 21]. A detailed discussion of each algo-
rithm can be found in [22, 23]. In this thesis we exclusively concentrate on
the hybridization expansion algorithm (CT-HYB) where the expansion is
done in powers of the hybridization: Hb = Hhyb. One of the advantages
of this algorithm is that complicated interactions, like Slater-Kanamori or
a spherical-symmetric Coulomb interaction, can be treated as long as the
local Hilbert space is not too large. In general [Hhyb, Hloc] 6= 0, such that at
least one operator is not diagonal and the expansion generically requires the
manipulation of matrices, whose size grow exponentially with the number
of impurity orbitals. For general interactions Hloc, i.e. interactions that are
not necessarily of density-density type, the computational bottleneck of the
algorithm turns out to be the calculation of the local trace. This limits state
of the art simulations to 5 spin degenerate bands with an Hilbert space size
of 45 = 1024 and makes the CT-HYB algorithm favorable for models with
a moderate number of bands but with complicated interaction. It is best
suited for single-site DMFT for materials with partially filled d and f shells,
where the ability to treat complex multiplet interactions, like the Coulomb
model, is necessary to describe the physics of the system accurately.

We start in the first section of this chapter with a detailed derivation of
the hybridization expansion, i.e. the partition function expansion in CT-
HYB. In the second section we explain how Monte Carlo sampling of this
diagrammatic expansion works. In the last section we derive the formulas
required to measure single- and two-particle Green’s functions in the Monte
Carlo procedure.

4.1 The Hybridization Expansion
In the hybridization expansion the impurity model Hamiltonian of Eq.(2.10)
is split in the following way:

Ha = Hbath +Hloc, Hb = Hhyb, (4.4)
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with the hybridization given by:

Hhyb =
∑
k,α

V α
k a
†
kαcα︸ ︷︷ ︸

≡H̃hyb

+
∑
k,α

V α∗
k c†αakα︸ ︷︷ ︸
≡H̃†

hyb

. (4.5)

It turns out to be favorable to expand simultaneously in H̃hyb and H̃†hyb
and not directly in Hhyb. In that way we get immediately rid of the (−1)n
factor. Since each term in the hybridization contains one creation and one
annihilation operator, only even powers of the expansion with an equal
number of alternatingly appearing H̃hyb and H̃†hyb operators contribute to
a non-vanishing trace:

Z =
∞∑
n=0

β∫
0

dτ1 . . .

β∫
0

dτn
β∫

0

dτ ′1 . . .
β∫

0

dτ ′n
(−1)2n

(n!)2

Tr
[
Tτe

−βHaH̃hyb(τ1)H̃+
hyb(τ

′
1) . . . H̃hyb(τk)H̃+

hyb(τ
′
k)
]
.

(4.6)

Substituting the explicit expressions for H̃hyb and H̃†hyb gives:

Z =
∞∑
n=0

β∫
0

dτ1 . . .

β∫
0

dτn
β∫

0

dτ ′1 . . .
β∫

0

dτ ′n
1

(n!)2

×
∑

α1,...,αn
α′1,...,α

′
n

∑
k1,...,kn
k′1,...,k

′
n

V α1
k1
V
α′1∗
k′1

. . . V αn
kn
V
α′n∗
k′n

× Tr
[
Tτe

−βHaa+
k1α1

(τ1)cα1(τ1)c+
α′1

(τ ′1)ak′1α′1(τ ′1) . . .

× a+
knαn

(τn)cαn(τn)c+
α′n

(τ ′n)ak′nα′n(τ ′n)
]
.

(4.7)
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We collect1 bath and impurity operators in two separate traces:

Z =
∞∑
n=0

β∫
0

dτ1 . . .

β∫
0

dτn
β∫

0

dτ ′1 . . .
β∫

0

dτ ′n
1

(n!)2

×
∑

α1,...,αn
α′1,...,α

′
n

∑
k1,...,kn
k′1,...,k

′
n

V α1
k1
V
α′1∗
k′1

. . . V αn
kn
V
α′n∗
k′n

× Trc
[
Tτe

−β(H0
loc+H

I
loc)cα1(τ1)c+

α′1
(τ ′1) . . . cαn(τn)c+

α′n
(τ ′n)

]
× Tra

[
Tτe

−βHbatha+
k1α1

(τ1)ak′1α′1(τ ′1) . . . a+
knαn

(τn)ak′nα′n(τ ′n)
]
.

(4.8)

The bath operators are non-interacting, we can therefore use the Wick theo-
rem to obtain further simplifications. We demonstrate this at the following
second-order term:∑
k1,k2
k′1,k

′
2

V α1
k1
V
α′1∗
k′1

V α2
k2
V
α′2∗
k′2

Tra
[
Tτe

−βHbatha+
k1α1

(τ1)ak′1α′1(τ ′1)a+
k2α2

(τ2)ak′2α′2(τ ′2)
]
.

(4.9)
Introducing the bath partition function

Zbath = Tra[e−βHbath ], (4.10)

and the simplified notation for the thermal expectation value of the bath
operators

〈. . .〉a = 1
Zbath

Tra
[
Tτe

−βHbath . . .
]
, (4.11)

we see that the second-order term of Eq.(4.9) can be contracted in the
following way:

Zbath
∑
k1,k2
k′1,k

′
2

V α1
k1
V
α′1∗
k′1

V α2
k2
V
α′2∗
k′2
〈a+
k1α1

(τ1)ak′1α′1(τ ′1)a+
k2α2

(τ2)ak′2α′2(τ ′2)〉a

= Zbath
( ∑
k1,k′1

V α1
k1
V
α′1
k′1
〈a+
k1α1

(τ1)ak′1α′1(τ ′1)〉a
∑
k2,k′2

V α2∗
k2

V
α′2∗
k′2
〈a+
k2α2

(τ2)ak′2α′2(τ ′2)〉a−

−
∑
k1,k′2

V α1
k1
V
α′2∗
k′2
〈a+
k1α1

(τ1)ak′2α′2(τ ′2)〉a
∑
k′1,k2

V
α′1
k′1
V α2∗
k2
〈a+
k′1α
′
1
(τ ′1)ak2α2(τ2)〉a

)
.

(4.12)
1Since in this process each bath operator is anti-commuted with an even number of

impurity operators the overall sign is unchanged.
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Keeping in mind that there is still an ordering symbol Tτ in each 〈. . .〉a we
can define the elements of the hybridization matrix ∆ via:

∆αiαj (τi, τj) ≡
∑
ki,kj

δki,kjV
αi
ki
V
αj
kj
〈a+
kiαi

(τi)akjαj (τj)〉a

=
∑
k

V αi
k V

αj
k 〈a

+
kαi

(τi)akαj (τj)〉a

=
∑
k

V αi
k V

αj
k 〈e

τiHbatha†kαie
−(τi−τj)Hbathakαje

−τjHbath〉a

=
∑
k

V αi
k V

αj
k

1 + e−βεk
×
{
e−εk(τi−τj) , 0 < (τi − τj) < β

−e−εk(β−τi+τj) ,−β < τi − τj) < 0,
(4.13)

where we have used the fact that the expectation value is non-vanishing only
for ki = k′j ≡ k. The second-order term can now be written as determinant
of the hybridization matrix:

det∆ =
∣∣∣∣∣ ∆α1α′1

(τ1, τ
′
1) ∆α1α′2

(τ1, τ
′
2)

∆α2α′1
(τ2, τ

′
1) ∆α2α′2

(τ2, τ
′
2)

∣∣∣∣∣
= ∆α1α′1

(τ1, τ
′
1)∆α2α′2

(τ2, τ
′
2)−∆α1α′2

(τ1, τ
′
2)∆α2α′1

(τ2, τ
′
1)

(4.14)

This holds also for the higher-order terms, so that the partition function
takes the form:

Z =Zbath
∞∑
n=0

β∫
0

dτ1 . . .

β∫
0

dτn
β∫

0

dτ ′1 . . .
β∫

0

dτ ′n
1

(n!)2

∑
α1...αn
α′1...α

′
n

× Trc
[
Tτe

−βHloccα1(τ1)c+
α′1

(τ ′1) . . . cαn(τn)c+
α′n

(τ ′n)
]
det∆.

(4.15)

As discussed in Appendix C we can remove the factorials and change in-
tegration bounds due to the time ordering. This leads us to the following
expression for the partition function expansion:

Z =Zbath
∞∑
n=0

β∫
0

dτ1 . . .

β∫
τn−1

dτn
β∫

0

dτ ′1 . . .
β∫

τ ′n−1

dτ ′n
∑

α1...αn
α′1...α

′
n

× Trc
[
Tτe

−βHloccα1(τ1)c+
α′1

(τ ′1) . . . cαn(τn)c+
α′n

(τ ′n)
]
det∆.

(4.16)

If the bath is diagonal in the spin-band space, i.e.

∆αiαj (τi, τj) = δαiαj∆αi(τi, τj), (4.17)
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the hybridization matrix ∆ becomes block diagonal and its determinant
becomes the product of determinants of smaller matrices ∆i:

det∆ = det

∆1
. . .

∆k

 =
n∏
i=1

det∆i. (4.18)

Hence, the partition function expansion for a spin-band diagonal bath takes
the form:

Z =Zbath
∞∑
n=0

β∫
0

dτ1 . . .

β∫
τn−1

dτn
β∫

0

dτ ′1 . . .
β∫

τ ′n−1

dτ ′n
∑

α1...αn

× Trc
[
Tτe

−βHloccα1(τ1)c+
α1(τ ′1) . . . cαn(τn)c+

αn(τ ′n)
] n∏
i=1

det∆i.

(4.19)

4.2 Monte Carlo Sampling of the Partition Func-
tion

The expression Eq.(4.16) for the partition function may be interpreted as an
integral over all the configurations x of weight dxw(x) in the configuration
space C:

Z =
∫
C

dxw(x). (4.20)

According to Eq.(4.16) a configuration x = (n,α, τ ) ∈ C is characterized by
the expansion order n, the combined spin-band indices α and the different
imaginary time arguments τ . Each configuration can then be visualized as
a graph of a diagrammatic expansion. The weight of a possible second-order
configuration amounts to:

w =ZbathTrc
[
Tτe

−βHlocc↑(τ1)c+
↑ (τ ′1)c↑(τ2)c+

↑ (τ ′2)
]

× (∆↑(τ1, τ
′
1)∆↑(τ2, τ

′
2)−∆↑(τ1, τ

′
2)∆↑(τ2, τ

′
1)).

(4.21)

In the above example all the operators have the same spin index so we get
both contributions from the hybridization determinant Eq.(4.14). Another
second-order example, where we have operators with different spin index,
reads:

w = ZbathTrc
[
Tτe

−βHlocc↑(τ1)c+
↓ (τ ′1)c↓(τ2)c+

↑ (τ ′2)
]
×(−∆↑(τ1, τ

′
2)∆↓(τ2, τ

′
1)).

(4.22)
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τ

0 β

↑ ↑ ↑ ↑

τ1 τ ′1
τ2 τ ′2

(a)

τ

0 β

↑ ↑ ↑ ↑

τ1 τ ′1
τ2 τ ′2

cαα

c†αα

(b)

τ

0 β

↑ ↓ ↓ ↑

τ1 τ ′1
τ2 τ ′2

(c)

τ

0 β

↑ ↓ ↓ ↑

τ1 τ ′1
τ2 τ ′2

(d)

Figure 4.1: Possible second-order configurations of a single-band model
(α =↑, ↓). The circles correspond to the impurity operators and the fat solid
bars to hybridization functions. Configurations (a) and (b) with all spins
up contribute to the weight given in Eq.(4.21). In the spin diagonal case
only configuration (c) contributes to the weight of Eq.(4.22). Configuration
(d) is killed by the Kronecker delta in Eq.(4.17).

Here we get, due to the Kronecker delta in Eq.(4.17), only one contribu-
tion from the determinant. Diagrammatic representations of these specific
configurations are shown in Figure 4.1.

Expectation values of observables are given by the weighted average
over the configuration space:

〈A〉w = 1
Z

∫
C

dxA(x)w(x). (4.23)

This expectation value can be approximated in a Monte Carlo importance
sampling procedure:

〈A〉w
MC≈ 〈A〉MC = 1

N

N∑
i=1

A(xi), (4.24)
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where the N random configurations xi are chosen such that they follow the
probability distribution:

p(x) = w(x)
Z

. (4.25)

According to the central limit theorem, the Monte Carlo average of Eq.(4.24)
is normally distributed around 〈A〉w and becomes exact in the limit of
N →∞.

Markov Process. In order to generate configurations xi which follow
the probability distribution Eq.(4.25), as required in the MC-average of
Eq.(4.24), we employ a Markov process. A Markov process is fully char-
acterized by the transition probabilities Wxy to go, in a single step, from
a configuration x to another configuration y. Starting from an arbitrary
configuration, such a process converges after a finite number of steps to
a stationary distribution p(x) if it is ergodic2 and if it fulfills the detailed
balance condition:

Wxy

Wyx
= w(y)
w(x) . (4.26)

It is important to sample the configuration space according to the sta-
tionary distribution, since we are ultimately interested in evaluating expec-
tation values of observables that correspond to the stationary state of the
system under consideration.

Metropolis Algorithm. A well known algorithm which satisfies the de-
tailed balance condition of Eq.(4.26) is the Metropolis algorithm. Therein
the transition probability is split in the following way:

Wxy = W prop
xy W acc

xy , (4.27)

so that the update from a given configuration x to another configuration y is
proposed with the probabilityW prop

xy , but only accepted with the probability
W acc
xy . The acceptance probability W acc

xy is given by:

W acc
xy = min[1, Rxy], (4.28)

where the acceptance ratio Rxy reads:

Rxy =
w(y)W prop

yx

w(x)W prop
xy

. (4.29)

If the proposed configuration y is rejected, the old configuration x is used
again.

2Each configuration in C must be reachable from each other configuration in C in a
finite number of steps.
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Sampling the Partition Function. Standard updates, which fulfill the
ergodicity condition, consist in adding/removing a creator-annihilator pair.
Due to the double Tailor expansion a term of order n has 2n operators,
so these updates increase/decrease the expansion order by one. In the
following we label configurations with their expansion order n, such that
the partition function takes the following form:

Z =
∑∫ ( n∏

i=1
dτidτ ′i

)
w(n)︸ ︷︷ ︸

p(n)

, (4.30)

with w(n) given by:

w(n) = ZbathTrc
[
Tτe

−βHloccα1(τ1)c+
α′1

(τ ′1) . . . cαn(τn)c+
α′n

(τ ′n)
]
det∆. (4.31)

The proposal probability of inserting a operator pair with time labels τi
and τ ′i amounts to:

W prop
n,n+1 = dτidτ ′i

β2 . (4.32)

The removal probability of a randomly chosen pair out of (n+ 1)2 existing
pairs reads:

W prop
n+1,n = 1

(n+ 1)2 . (4.33)

The acceptance ratio becomes:

Rn,n+1 =
p(n+ 1)W prop

n+1,n
p(n)W prop

n,n+1

=
(∏n

i=1 dτidτ ′i
)
dτjdτ ′jw(n+ 1) 1

(n+1)2(∏n
i=1 dτidτ ′i

)
w(n)dτjdτ ′j

β2

=w(n+ 1)
w(n)

β2

(n+ 1)2 .

(4.34)

Substituting Eq.(4.31) gives:

Rn,n+1 =
Trc
[
Tτe

−βHloccα1(τ1)c+
α′1

(τ ′1) . . . cαn+1(τn+1)c+
α′n+1

(τ ′n+1)
]
det∆′

Trc
[
Tτe−βHloccα1(τ1)c+

α′1
(τ ′1) . . . cαn(τn)c+

α′n
(τ ′n)

]
det∆

β2

(n+ 1)2 .

(4.35)
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For the spin-band diagonal bath (see Eq.(4.19)) the above expression sim-
plifies:

Rn,n+1 =
Trc
[
Tτe

−βHloccα1(τ1)c+
α1(τ ′1) . . . cαn+1(τn+1)c+

αn+1(τ ′n+1)
]
det∆n+1

Trc
[
Tτe−βHloccα1(τ1)c+

α1(τ ′1) . . . cαn(τn)c+
αn(τ ′n)

] β2

(n+ 1)2 .

(4.36)
The acceptance ratio for the inverse process (removing an operator pair) is
given by:

Rn+1,n = R−1
n,n+1. (4.37)

For a spin-band diagonal bath the computation of the hybridization de-
terminant is computationally inexpensive (see Eq.(4.14)). If only density-
density interactions are taken into account, the local Hamiltonian is diag-
onal in the occupation number representation. In this case there exists an
efficient procedure, the segment algorithm [22], to evaluate the acceptance
ratio of Eq.(4.36). For more general interactions, where the local Hamil-
tonian is not diagonal, the calculation of the local trace in Eq.(4.36) is a
delicate task and the computational bottleneck of the algorithm. A straight
forward approach [21] consists in representing the creation and annihilation
operators in the eigenbasis of the local Hamiltonian, which has the advan-
tage that the propagator e−βHloc is diagonal. If the local Hamiltonian has
symmetries, it is favorable to transform it to a basis where it takes a block
diagonal form to reduce the computational effort in calculating the matrix-
matrix products [24]. An alternative approach, the Krylov implementation,
has been proposed by Läuchli and Werner [25]. They stay in the occupa-
tion number basis where the Hamiltonian and the hybridization operators
are sparse and use efficient Krylov-space algorithms to calculate the matrix
exponential required for the imaginary time evolution.

4.3 Measuring Correlation Functions
In order to derive the Monte Carlo accumulation formulas for the single-
and two-particle Green’s function it is favorable to represent the partition
function as path integral over Grassmann variables:

Z = e−E[∆] =
∫
Dc+Dc e−S . (4.38)

The action of the impurity model is given by:

S = −
β∫

0

dτ

β∫
0

dτ ′
∑
α

c+
α (τ)

[
G0
α(τ − τ ′)

]−1
cα(τ ′) +

β∫
0

dτ HI
loc(τ), (4.39)
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where the bare Green’s function reads:

G0
α(iωn) =

(
iωn − µ−∆α(iωn)

)−1
. (4.40)

Above we have introduced the functional:

E[∆] = −lnZ[∆], (4.41)

which we will use as generating functional for connected correlation func-
tions. Furthermore we introduce functional derivatives in the following
way:

δ

δ∆β(τc, τd)
∆α(τa, τb) = δαβδ(τa − τc)δ(τb − τd). (4.42)

In the above formulas we have implicitly assumed that our hybridization
matrix and the interaction matrix is block diagonal in the spin-band space,
which in turn results in single-particle Green’s function with only one com-
bined index. For the case of non-diagonal interaction the hybridization
must also include off-diagonal contributions in order to serve as a source
term in the partition function. The single-particle Green’s function then
comes with two combined indices.

Single-Particle Green’s Function. Now we are in the position to ob-
tain correlation functions from the generating functional E[∆] via func-
tional derivatives w.r.t. hybridization functions:

δE

δ∆α(τ2, τ1) = − 1
Z

δZ

δ∆α(τ2, τ1)

= 1
Z

∫
Dc+Dc c+

α (τ2)cα(τ1)e−S

= 〈Tτ c
+
α (τ2)cα(τ1)〉 = −〈Tτ cα(τ1)c+

α (τ2)〉 .

(4.43)

From the definition of the single-particle Green’s function Eq.(2.23) we
immediately see that:

δE

δ∆α(τ2, τ1) = Gα(τ1, τ2). (4.44)

In order to obtain the formula for the Monte Carlo weights, we must use
the explicit expression for the partition function Eq.(4.19), which we repeat
here for convenience:

Z =Zbath
∞∑
n=0

β∫
0

dτ1 . . .

β∫
τn−1

dτn
β∫

0

dτ ′1 . . .
β∫

τ ′n−1

dτ ′n
∑

α1...αn

× Trc
[
Tτe

−βHloccα1(τ1)c+
α1(τ ′1) . . . cαn(τn)c+

αn(τ ′n)
]
det∆.

(4.45)
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The generating functional takes the form:

E[∆] = −lnZbath
∑∫

Trc[. . .]det∆. (4.46)

To get the corresponding expression for the Green’s function we need to
take the derivative from the determinant part only, since the local trace
Trc[. . .] contains no hybridization functions:

Gα(τ1, τ2) = − 1
Zbath

∫
Trc[. . .]det∆Zbath

∑∫
Trc[. . .]

δdet∆
δ∆α(τ2, τ1) . (4.47)

We use Jacobi’s formula to get the derivative of the determinant w.r.t. a
matrix element Aab:

∂

∂Aab
detA = detA(A−1)ba. (4.48)

Using the above identity for the hybridization determinant and introducing
Mα(τi, τj) ≡ ∆−1

α (τi, τj) we get:

δdet∆
δ∆α(τ2, τ1) = det∆×Mα(τ1, τ2). (4.49)

The Green’s function can now be written as:

Gα(τ1, τ2) = − 1
Z
Zbath

∑∫
Trc[. . .]det∆Mα(τ1, τ2). (4.50)

Comparing the last expression to Eq.(4.23) and Eq.(4.24) allows us to iden-
tify the estimators for the Green’s function, i.e. the quantities that are
averaged in the MC procedure:

Gα(τ1, τ2) MC≈ −〈Mα(τ1, τ2)〉MC = − 1
N

∑
C
Mα(τ1, τ2). (4.51)

The N random configurations {x} ⊂ C in the Monte Carlo average are
generated according to the distribution:

p(x) = ZBathdet∆
Z

, (4.52)

using the Metropolis algorithm described in the previous section.
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Two-Particle Green’s Function. Though, a little more elaborate, the
procedure for the two-particle correlation function works completely anal-
ogous to the single-particle case. Here we need to pull down four operators
from the exponential, therefore we take two functional derivatives:

δ2E

δ∆α(τ2, τ1)δ∆β(τ4, τ3) =− 1
Z

δ2Z

δ∆α(τ2, τ1)δ∆β(τ4, τ3)+

+ 1
Z2

δZ

δ∆α(τ2, τ1)
δZ

δ∆β(τ4, τ3)
= 〈Tτ c

+
α (τ2)cα(τ1)c+

β (τ4)cβ(τ3)〉
− 〈Tτ c

+
α (τ2)cα(τ1)〉 〈Tτ c

+
β (τ4)cβ(τ3)〉

= 〈Tτ cα(τ1)c+
α (τ2)cβ(τ3)c+

β (τ4)〉
− 〈Tτ cα(τ1)c+

α (τ2)〉 〈Tτ cβ(τ3)c+
β (τ4)〉

≡ 〈Tτ cα(τ1)c+
α (τ2)cβ(τ3)c+

β (τ4)〉conn .

(4.53)

In the last line we have defined the connected part of the two-particle
Green’s function. By making the identification:

δ2E

δ∆α(τ2, τ1)δ∆β(τ4, τ3) = χαβ(τ1, τ2, τ3, τ4), (4.54)

we obtain the definition of the generalized susceptibility from Eq.(2.42):

χαβ(τ1, τ2, τ3, τ4) = Gαβ(τ1, τ2, τ3, τ4)−Gα(τ1, τ2)Gβ(τ3, τ4). (4.55)

Since the unconnected part can be completely expressed in terms of single-
particle Green’s functions, we only have to take care of the part where two
derivatives act on the partition function:

Gαβ(τ1, τ2, τ3, τ4) =− 1
Z

δ2Z

δ∆α(τ2, τ1)δ∆β(τ4, τ3)

=− 1
Z
Zbath

∑∫
Trc[. . .]

δ2det∆
δ∆α(τ2, τ1)δ∆β(τ4, τ3) .

(4.56)

To get the corresponding accumulation formula we need the second deriva-
tive of the hybridization determinant. Recursive application of Jacobi’s
formula Eq.(4.48) results, as demonstrated in Appendix D, in the following
expression for the second derivative of a determinant:

∂2

∂Aab∂Acd
detA = detA

[
(A−1)ba(A−1)dc − (A−1)da(A−1)bc

]
. (4.57)
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Applying the above expression to the hybridization determinant gives:

δ2det∆
δ∆α(τ2, τ1)δ∆β(τ4, τ3) = det∆× [Mα(τ1, τ2)Mβ(τ3, τ4)

− δα,βMα(τ1, τ4)Mα(τ3, τ2)].
(4.58)

The two-particle Green’s function now reads:

Gαβ(τ1, τ2, τ3, τ4) =− 1
Z
Zbath

∑∫
Trc[. . .]det∆

× [Mα(τ1, τ2)Mβ(τ3, τ4)− δα,βMα(τ1, τ4)Mα(τ3, τ2)].
(4.59)

We can now, in complete analogy to the single-particle case, identify the
estimators for the two-particle Green’s function:

Gαβ(τ1, τ2, τ3, τ4) MC≈ 〈Mα(τ1, τ2)Mβ(τ3, τ4)−Mα(τ1, τ2)Mβ(τ3, τ4)〉MC

= 1
N

∑
C

(
Mα(τ1, τ2)Mβ(τ3, τ4)− δα,βMα(τ1, τ4)Mα(τ3, τ2)

)
.

(4.60)



Chapter 5

Numerical Simulations

The main objective of this work was to implement and test a measurement
routine for the two-particle Green’s function in a CTQMC code. In this
Chapter we present some of the results from our numerical simulations done
with this code. As discussed in Chapter 2 the two-particle quantities we
are interested in come with two spin and three τ -indices and in the multi-
band case with two additional band indices. Because of the many indices
these quantities are numerically costly to measure and result in rather huge
data volumes. We restricted our simulations to the half-filled single-band
case where the numerical effort which is necessary to provide proper statis-
tics was manageable with the parallel performance of 12 CPU’s within less
than a week of runtime per simulation. Furthermore we had for comparison
purposes an ED and a HF code to our disposal which are essentially both
restricted to the single-band case. In each simulation 10 DMFT iterations
were performed, which means our results represent DMFT solutions of the
half-filled Hubbard model given in Eq.(2.8). In the first section of this
chapter we compare the two-particle Green’s function in τ -space from our
CTQMC code to that from the HF algorithm. In the second section we
compare the generalized susceptibilities in ω-space from CTQMC, HF and
ED. We discuss in the third section how the numerical effort of our imple-
mentation scales with β and U . Finally, in the last section we document
our approach of calculating the local spin susceptibility in the vicinity of
the Mott-transition with our CTQMC code.

5.1 Two-Particle Quantities in τ-space
In order to check if our measurement routine works correctly we want to
compare the two-particle results from our CTQMC code to the correspond-

41
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ing results from the HF algorithm. In this comparison we take a look at
the generalized susceptibilities with two of the three τ -indices fixed. As
discussed in Appendix E in the Hirsch-Fye method the interval [0, β) is
split into N equally spaced slices. For β = 10 and N = 100 this means
the Green’s function is evaluated and stored at τ = 0, 0.1, 0.2, . . . , 9.9. In
the CTQMC code the Green’s function is measured at randomly chosen
τ -points out of the interval [0, β). In the Monte Carlo routine these mea-
surements are averaged inNbin sub-intervals of [0, β) and stored. These sub-
intervals are called bins and the process of averaging therein is referred to as
binning. For β = 10 and Nbin = 50, i.e., 50 bins of equal size, this results
in the following partitioning: [0, 10) = {[0, 0.2), [0.2, 0.4), . . . , [9.8, 10.0)}.
Due to the averaging in each bin the Green’s function is evaluated at
τ = 0.1, 0.3, . . . , 9.9. That means when we chooseNbin = 50 in the CTQMC
algorithm and N = 100 in the HF algorithm each point from CTQMC
should be the average of every second point from the HF algorithm. In
Figure 5.1 we compare the generalized susceptibilities χσσ′ in the DMFT
limit on the Bethe lattice from the HF and the CTQMC method using
the following Hubbard parameters: U = 1.5, β = 10, µ = U/2. In the
CTQMC method χσσ′ is built by subtracting the disconnected part Dσσ′

(see Eq.(2.39)) from the full two-particle Green’s function G(2)
σσ′ . The later

is the only quantity that is measured on the two-particle level, i.e., that
is numerically costly. The disconnected part is built form single-particle
Green’s functions measured on the single-particle level. From Figure 5.1
we see that the susceptibilities from CT and HF lie practically on top. The
only noteworthy differences appear at those values where the two-particle
Green’s function has a discontinuity, i.e., where τi = τj . This discrepancy
is a result of the incorrect implementation of the Monte Carlo measure-
ment at these special points. The following example should make this issue
clear. Let us take a look at Figure 5.1c and therein at the discontinuity
of the two-particle Green’s function at τ2 = τ3 = 3.7. At this value the
susceptibilities from HF and CTQMC differ clearly. Naively evaluating the
two-particle Green’s function at τ3 = 3.7 would amount to averaging the
measurements in bin (3.6, 3.8]. But the measurements where 3.6 < τ3 < 3.7
have positive and those where 3.7 < τ3 < 3.8 have negative amplitude and
averaging of these values clearly gives the wrong result. So how to pro-
ceed? We addressed this problem by discarding all measurements where
3.6 < τ3 < 3.7 and multiplied the values of those where 3.7 < τ3 < 3.8
with a factor of two. In that way we avoid at least the averaging across
the discontinuity. However, by averaging in the interval (3.7, 3.8] we assign
to the point at τ3 = 3.7 the value that actually belongs to τ3 = 3.75. This
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Figure 5.1: Comparison between the susceptibilities χσσ′ from the
Continuous-Time (CT) and the Hirsch-Fye (HF) algorithm. Further, the
disconnected part Dσσ′ and the full two-particle Green’s function G(2)

σσ′ from
the CT algorithm are shown.

wrong assignment is reflected in the remaining discrepancies in Figure 5.1.
The single-particle Green’s function does not suffer from this problem and
in turn the disconnected part from the two-particle Green’s function, too.
This can be directly seen from the definition of the single-particle Green’s
function:

Gσ(τ = 0) = 〈Tτ cσ(0)c+
σ 〉 =: nσ, (5.1)

which is discontinuous only at τ = 0. However, Gσ(0) is per definition
equivalent to the occupation number nσ which can be simply calculated by
counting the number of electrons that are added/removed during the up-
date procedure. A direct generalization to the two-particle Green’s function
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Figure 5.2: Study of the systematic (binning) error at the discontinuity. For
U=0, the disconnected part Dσσ′ and the full two-particle Green’s function
G

(2)
σσ′ should be equivalent.

is not possible. We see this from the following inequality:

Gσσ′(τ, τ, τ3) = 〈Tτ cσ(τ)c+
σ (τ)cσ′(τ3)cσ′〉

= 〈Tτnσ(τ)cσ′(τ3)cσ′〉
6= 〈Tτnσ(τ)〉〈Tτ cσ′(τ3)cσ′〉
= nσGσ′(τ3).

(5.2)

Since the number operator appears in company with the remaining two
impurity operators the resulting thermal expectation value can not be eval-
uated by simple electron counting. We avoid to measure directly quantities
like those of Eq.(5.2) by approximating them with the method discussed
above. To study the influence of the bin-size on this error, we compare
the disconnected part to the full two-particle Green’s function for U = 0,
where both should be equivalent. This comparison, for 50 and 150 bins, is
shown in Figure 5.2. The result is with increasing Nbin the error is getting
smaller.

5.2 Generalized Susceptibilities in Frequency-space
In our CTQMC code the two-particle Green’s function is measured in τ -
space. As discussed in Chapter 2 the transformation to frequency repre-
sentation may be defined in various ways. We concentrate in this section
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on the particle-hole representation given in Eq.(2.44). The spin and charge
susceptibilities are defined as the following linear combinations of particle-
hole susceptibilities:

χνν
′ω

d := χνν
′ω

ph,↑↑ + χνν
′ω

ph,↑↓, (5.3)

χνν
′ω

m := χνν
′ω

ph,↑↑ − χνν
′ω

ph,↑↓. (5.4)

In Figure 5.3 we compare the results from the Continuous-Time, Hirsch-
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Figure 5.3: Comparison between charge (spin) susceptibility χd (χm) from
CTQMC, HF and ED on Bethe and simple-cubic lattice. Systematic devi-
ations can be seen in the enlarged views shown in the inlays.

Fye and Exact-Diagonalization method. We show the charge (spin) sus-
ceptibility χd (χm) in the DMFT limit on the Bethe and the simple cubic
lattice. The plots are made with fixed values for ω = 0 and ν1 = 0.314 (first
Matsubara frequency). From the CT solver results are shown for 50 and
100 bins. The corresponding Hubbard parameters are: U = 1.5, β = 10,
µ = U/2. In the small inlays enlarged views are shown. These make a
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systematic offset between the CTQMC results and those from HF and ED
visible. This offset is correlated to the number of bins used in the CTQMC
solver. We observe that this failure is smaller for 100 bins than in the cal-
culation with 50 bins. We suspect that this systematic error originates in
the assignment error at the discontinuity that we discussed in the previous
section.

5.3 Performance Benchmark
In the hybridization algorithm the expansion order is distributed around
some average value that is correlated to the parameters U and β of the
Hubbard model (for details see [26]). During the sampling procedure the
current configuration, and thus the expansion order, is changed by adding
and removing creation and annihilation operators at randomly chosen τ -
points in the local trace1. The size of the hybridization matrix is changed
accordingly. In our measurement routine for the two-particle Green’s func-
tion the result from Eq.(4.60) is accumulated for all entries of the inverse
hybridization matrix. Each of these single results will be referred to as
estimator and we call the set of all these evaluations for a given config-
uration a measurement.2 Thus the number of estimators in each bin per
measurement depends on the expansion order as well as on the number of
bins. For increasing β the size of the hybridization matrix increases and
approaching low temperatures becomes numerically expensive. Opposed
to the Hirsch-Fye algorithm, in the hybridization algorithm the matrix size
is getting smaller for increasing U (see [26, 27]). In turn, sampling the
partition function becomes more efficient in the strong coupling regime. In
Figure 5.4 we show the scaling of the overall runtime with β and U for the
computation of generalized susceptibilities in the DMFT limit. The corre-
sponding results in τ - and ω-space are shown in Figure 5.5. In all these
simulations 10 DMFT-iterations were performed. The simulations for var-
ious values of U were done for β = 150 and we used 104 measurements in
the first 9 DMFT-iterations at the single-particle level. The two-particle
Green’s function was evaluated only in the 10th DMFT-iteration using 105

measurements. In the simulations for various β were 106 (107) measure-
ments performed on the single-(two-)particle level. In the simulation for
β = 150 there were 104 (105) measurements done and the resulting (very

1As local trace we refer here to the factor Trc[. . .] in Eq.(4.19) which contains the
impurity operators.

2The number of measurements can be passed as an external parameter to the algo-
rithm, where the number of estimators results rather indirectly from the expansion order.
Both, however, contribute to the statistics and thus to the quality of the result.
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Figure 5.4: Scaling of computation time: DMFT-simulation of the half-
filled single-site Hubbard model on the Bethe lattice for different U and
β.

long) runtime for 106 measurements is only an extrapolation. In testing
our measurement routine we made the following observations:

• Since the two-particle Green’s function comes with three τ -indices
the corresponding statistical effort scales with the third power of the
number of bins as opposed to the single-particle case where this scal-
ing is only linear.

• Increasing the number of bins makes the binning error smaller, but
the statistical effort and the memory requirement for the computation
grow drastically.

• In the strong-coupling regime, the absolute values of the two-particle
Green’s function become relatively small compared to the weak-coupling
regime. In turn a fine discretization, i.e. a fine binning, is necessary
to resolve any details of the Green’s function.

• Due to the increasing expansion order for high values of β the eval-
uation time for the two-particle Green’s function increases rapidly.
The amplitudes are getting smaller but for high expansion orders the
number of estimators per bin and measurement increases which, in
turn, results in better statistics.

The points above make clear that the preferable scaling for sampling the
partition function in the strong coupling regime is not directly transfered to
the measurement of the two-particle Green’s function. In our simulations
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Figure 5.5: Generalized susceptibilities χ in the DMFT-limit at different
values of β and U .

we were, due to a lack of computer memory and due to statistical reasons
practically restricted to a maximum of 100 bins (for each τ -index).

5.4 First Application: Local Spin Susceptibility
As a first application of our measurement routine, we calculate the behavior
of the local spin susceptibility:

χloc(ω) :=
∑
νν′

χνν
′ω

m , (5.5)

in the vicinity of the Mott-Hubbard metal-insulator transition (MIT). This
phase transition is driven by electron-electron interaction. The correlation
induced insulating phase is referred to as Mott insulator. Our main concern
here is to test the applicability of our routine to the calculation of χloc. A
detailed discussion about the local spin susceptibility near the MIT at finite
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temperature is given in [14, 28]. Zero-temperature results obtained from a
projective quantum Monte Carlo algorithm can be found in [29]. We per-
formed calculations for the half-filled Hubbard model with a semicircular
density of states (Bethe lattice). The half bandwidth is set to unity. We
approach the MIT from the metallic side, i.e. from low values of U ini-
tializing the DMFT self-consistency routine with a purely metallic solution
(Σ = 0). At zero temperature (or equiv. β →∞) and for increasing U the
local susceptibility is expected to diverge (see [29]) at the MIT.

In Figure 5.6 we show χloc(0) over U for various values of β. In the
metallic regime we observe the expected increase of χloc(0). With increas-
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Figure 5.6: Local spin susceptibility for various values of β in the vicinity
of the Mott-transition. The simulations are done with 50 bins. We obtain
the expected increase of χloc in the metallic phase, however, we get an
unexpected decrease in the insulating phase.

ing β the maximum of χloc is shifted towards higher values of U . This
is consistent with the broadening of the coexistence region in the DMFT
solution. Our method, however, fails to predict the constant behavior of
χloc(0) in the insulating phase. Instead the susceptibility falls off in the
insulating regime which is in clear conflict with the results in [14, 28, 29].
We suspect that this incorrect behavior is caused by the systematic error
that we introduce in the measurement of the two-particle Green’s function
at the discontinuities, i.e. the binning error discussed in Chapter 5.1. This
suspicion is confirmed by Figure 5.7, where the influence of Nbin on χm
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(left panel) and χloc (right panel) is shown. From the right panel it can
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Figure 5.7: Influence of Nbin on χm and χloc: (a) for small Nbin the system-
atic offset is clearly noticeable, additionally we miss due to the resulting
small Nf non-negligible contributions in the frequency summation; (b) the
comparison between χloc from Nbin = 50 and Nbin = 100 suggests that we
actually must use at least Nbin > 100 to get the expected behavior in the
insulating phase.

be seen that the unexpected downward trend of χloc for large values of U
is tamed by increasing Nbin. Furthermore in our simulations the sum in
Eq.(5.5) is done over a finite number Nf of fermionic frequencies ν, ν ′. We
use a Fourier transformation where Nf is fixed to be equal two times the
number of bins Nbin. Hence, for Nbin = 50, the summation in Eq.(5.5) goes
over Nf = 100 frequencies in each ν and ν ′. For small Nf we might miss
substantial contributions in this "incomplete" summation (see left panel of
Figure 5.7). An accurate evaluation would require some kind of extrapola-
tion prescription in which this frequency cut-off is sent to infinity. Finally
we inquire the influence of the statistic on our results. In the parameter
regime of low temperature and strong interaction the amplitudes of the
two-particle Green’s function are approximately a factor 10−3 smaller than
in the metallic phase (see Figure 5.8). Thus resolving relevant features of
the two-particle Green’s function requires a fine discretization which, in
turn, makes it numerically expensive to reach sufficient statistic to obtain
a smooth χm.

In the left panel of Figure 5.9 we show the spin susceptibility resulting
from different initializations (seeds) of the random-number generator. The
right panel shows the average of these results and the corresponding, rather
large, error-bars. One might suspect that these results do not form a good
basis for the calculation of χloc. But since we sum up all the values of
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Figure 5.8: χ↑↑ for β = 150 and various values of U : the amplitudes for
U ≥ 3 are about three orders smaller than for U < 3; furthermore between
U = 3.5 and U = 4 a change in the sign of χ can be observed.

the susceptibility for ν1 and ν2 the statistical errors are canceling to some
extent and we observe that the bad statistic, reflected in the huge error-bars,
has practically no influence on the final result for the local susceptibility.
We also confirmed this issue at β = 20 and U = 3.5 where we compared
calculations which were done with 105 and 106 measurements and found
agreement in the corresponding χloc up to the third decimal place.
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Figure 5.9: Spin susceptibility χm at β = 10 and U = 5: (a) results from
different initializations (seeds) of the random number generator, in each
of these independent simulations 107 measurements were performed; (b)
average values and the corresponding standard deviation.



Chapter 6

Conclusion and Prospect

We have implemented and tested a measurement routine for the two-particle
Green’s function in a continuous-time hybridization expansion algorithm.
This routine is based on the identification of partition function configura-
tions with two hybridization lines removed as configurations for the two-
particle Green’s function. Within this approach it is, in contrast to the
segment formulation, possible to account for correlation functions which
are not diagonal in their band indices. For testing purposes we compared
two-particle quantities like the spin susceptibility in the DMFT limit of
the single-band Hubbard model from our new routine to those from the
Hirsch-Fye and Exact-Diagonalization method. In τ -space representation
the only discrepancies in these comparisons appear at those points where
two τ -indices of the two-particle Green’s function are equal and the dis-
connected part is discontinuous. The measurement at these discontinuities
turned out to be problematic and we did not completely solve this issue.
Their importance was not clear at a early stage of this work, so we decided
to implement an approximative method to treat these special points of the
two-particle Green’s function.

In order to benchmark the performance of our code we carried out
calculations of two-particle correlation functions at various values of the
interaction strength and temperature. It is known that, opposed to the
Hirsch-Fye method, in the hybridization algorithm sampling the partition
function becomes more efficient with increasing U, i.e. in the strong cou-
pling regime. However, we observe that this favorable scaling with U does
not directly transfer to the measurement of the two-particle Green’s func-
tion. In the hybridization algorithm the averaged expansion order of par-
tition function configurations goes down with increasing U . Therefore less
hybridization lines are present in the local trace and measuring the single-

52



53

and two-particle quantities becomes inefficient, i.e. the results suffer from
bad statistics. This poor yield of hybridization lines in the local trace must
be compensated by increasing the number of measurements (and updates)
in the Monte Carlo procedure. For decreasing temperature the averaged
expansion order grows and so does the number of hybridization lines in
the local trace, thus the number of measurements may be reduced without
causing bad statistics.

As a first application we calculated the local spin susceptibility in the
vicinity of the Mott-transition of the half-filled single-band Hubbard model.
In the metallic regime we obtain the expected increase of the susceptibil-
ity when approaching the transition point. For the Mott insulator, i.e.
at strong interaction, our local susceptibility is in clear conflict with the
results found in the literature. Instead of a constant behavior our χloc de-
creases with growing U . If we choose a finer τ -grid, i.e. more bins, this
discrepancy is getting smaller and the problem most likely originates in
our simplified treatment of the discontinuities of the two-particle Green’s
function. Due to the three τ -indices of the two-particle Green’s function
the required number of measurements and the numerical effort in doing the
Fourier transformation grow drastically with the number of bins, so we were
practically restricted to simulations with 100 bins (τ -points). For the case
of the local spin susceptibility this already results in an overall simulation
time of several days. Owing to the shorter simulation time the majority of
our simulations where done with 50 bins which can be performed within a
single day. However, it turned out that for 50 bins our method is not accu-
rate enough to predict the expected behavior of the local spin susceptibility
in the insulating regime.

Finally we suggest possible further applications and improvements of
our routine. The starting point in any extension of the current work must
certainly be a more accurate treatment of the discontinuities. After this is
done we expect the bad influence of the discretization on our results to be
significantly reduced and we might even get on a coarse τ -grid satisfying
results for the local susceptibility. Our code features multi-band function-
alities providing local Hamiltonians of Slater-Kanamori and Coulomb type.
This allows us to run multi-band simulations including non-density-density
interactions. A potential future application of our measurement routine
would be the investigation of two-particle quantities from multi-band mod-
els with these interactions. With the existing code it is in principle possible
to perform such calculations. In the current setup we are however restricted
to a maximum parallel usage of 12 CPU’s on a single node of the computer
cluster we utilize. This makes especially the Fourier transformation for
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many τ -points very costly in terms of time. In order to make the result-
ing simulation times reasonable particularly with regard to time-consuming
multi-band calculations it would be necessary to improve the parallelization
of the code such that several nodes of the computer cluster can be used in
parallel.
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Appendix A

The Local Hamiltonian for
Spherical Symmetric
Coulomb Interaction

The purpose of this appendix is to give a detailed derivation of the local
Hamiltonian for the case of spherical symmetric Coulomb interaction. The
idea is to use the matrix elements of the Coulomb interaction with central
field eigenfunctions as the U in the local Hamiltonian. In the calculation of
these matrix elements it turns out that the corresponding angular depen-
dent part can be expressed analytically where the radial part can not. The
angular part involves integrals over the product of three spherical harmon-
ics. In Appendix A.2 we introduce the so called Gaunt coefficients which
give, when expressed in terms of Wigner 3-j symbols (see Appendix A.1),
a compact formula to calculate the integral over three spherical harmon-
ics. In Appendix A.3 we finally obtain the desired expression for the local
Hamiltonian.
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A.1 The Wigner 3-j Symbol
The Wigner 3-j symbol is an algebraic function defined by the following
expression [30], also referred to as Racah formula:(
j1 j2 j3
m1 m2 m3

)
≡ δm1+m2+m3,0(−1)(j1−j2−m3)

[ 1
(j1 + j2 + j3 + 1)!

]1/2

× [(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!]1/2

× [(j1 −m1)!(j1 +m1)!(j2 −m2)!(j2 +m2)!(j3 −m3)!(j3 +m3)!]1/2

×
∑
k

(−1)k

k!(j1 + j2 − j3 − k)!(j1 −m1 − k)!

× 1
(j2 +m2 − k)!(j3 − j2 +m1 + k)!(j3 − j1 −m2 + k)! .

(A.1)

This function is defined to be non-zero only for values of ji and mi such
that the arguments of all factorials are non-negative integers. From the
first line of (A.1) follows:

(j1 − j2 −m3) ∈ Z (A.2)

and
(j1 + j2 + j3) ∈ N (A.3)

in order that the 3-j symbol is real valued. From the second line follow the
conditions:

j1 + j2 ≥ j3,
j2 + j3 ≥ j1,
j3 + j1 ≥ j2.

(A.4)

From the third line can be seen, that ji and mi must both be either integral
or half-integral, with ji ≥ |mi| ≥ 0. The summation in (A.1) is finite, being
over those integral values of k that satisfy

max(0, j2− j3−m1, j1− j3 +m2) ≤ k ≤ min(j1 + j2− j3, j1−m1, j2 +m2).
(A.5)

An important symmetry property of the 3-j symbol follows directly from
the definition:(

j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
, (A.6)

which, in the special case of m1 = m2 = m3 = 0, results in the condition
that (j1 + j2 + j3) must be even.
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A.2 Gaunt Coefficients
The spherical harmonics Ylm(θ, φ) form a complete set for functions of the
spherical coordinates θ and φ. Since the product of two spherical harmonics
is a function of θ and φ it can be expanded in spherical harmonics. This
gives the Gaunt series:

Ylama(θ, φ)Ylcmc(θ, φ) =
∞∑
l=0

l∑
m=−l

Ylm(θ, φ)glm(la,ma; lc,mc), (A.7)

with the Gaunt coefficients:

glm(la,ma; lc,mc) =
π∫

0

2π∫
0

dθdφ sin θY ∗lm(θ, φ)Ylama(θ, φ)Ylcmc(θ, φ). (A.8)

Using the Wigner 3-j symbols (A.1) allows to express the Gaunt coefficients
as follows:

glm(la,ma; lc,mc) = (−1)m
√

[l][la][lc]
4π

(
l la lc
0 0 0

)(
l la lc
−m ma mc

)
,

(A.9)
where [l] = (2l + 1).

The relations (A.8) and (A.9) together with (A.1) provide an elegant
way to calculate the integral over the product of three spherical harmonics.

A.3 The Matrix Elements of Coulomb Interaction
A system of N interacting identical electrons may be approximated by a set
of independent one-electron wave functions {ψ(a;x1),ψ(b;x2), . . . ,ψ(n;xn)}
labelled by an individual set of quantum numbers {a, b, . . . , n}. For the case
of Coulomb interaction the matrix elements of the local interaction Hamil-
tonian HU can be written as follows [30]:

〈a, b |HU | c, d〉 ≡
〈
a, b

∣∣∣∣ 1
|x1 − x2|

∣∣∣∣ c, d〉
=
∫ ∫

dx1dx2ψ
†(a;x1)ψ†(b;x2) 1

|x1 − x2|
ψ(c;x1)ψ(d;x2),

(A.10)

where a stands for {na, la,ma,msa}, also referred to as principal quantum
number, the quantum numbers of orbital angular momentum and the z-
projection of angular momentum and spin, respectively. The corresponding
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wave function reads:

ψ(a;x1) = Rnala(r1)Ylama(θ1, φ1)χmsa . (A.11)

The spin operators S1 and S2 commute with 1
|x1−x2| . Thus the product

of the spinor parts χms in (A.10) results in a pair of Kronecker deltas
δmsa,mscδmsb,msd and the Coulomb Hamiltonian matrix is therefore sepa-
rately diagonal in the spin indices. That’s why in the Coulomb model
interacting electrons do not change their spin.

Expanding 1
|x1−x2| in spherical harmonics Ylm(θ, φ) gives [31]:

1
|x1 − x2|

=
∞∑
l=0

l∑
m=−l

4π
[l]

rl<
rl+1
>

Ylm(θ1, φ1)Y ∗lm(θ2, φ2), (A.12)

where [l] is an abbreviation for (2l+ 1) and r< (r>) is the smaller (greater)
value of |x1| and |x2|. Expressing the spherical harmonics in terms of
associated Legendre functions Plm(cos θ) yields:

Ylm(θ, φ) =
√

[l]
4π

(l −m)!
(l +m)!Plm(cos θ)eimφ. (A.13)

Collecting all exponentials in (A.10) and integrating over the azimuthal
angels φi results in the factor:

l∑
m=−l

2π∫
0

dφ1e
i(m−ma+mc)φ1

2π∫
0

dφ2e
i(md−m−mb)φ2 , (A.14)

which is only different from zero when (m−ma +mc) = 0 and (md −m−
mb) = 0. The factor (A.14) is thus equivalent to the condition [32]:

ma +mb = mc +md (A.15)

which gives another Kronecker delta δma+mb,mc+md and removes the sum
over m. The Hamiltonian is therefore diagonal in Lz1 + Lz2 but not sepa-
rately in Lz1 and Lz2 , expressing the physical fact that interacting electrons
may interchange orbital angular momentum.

The matrix elements (A.10) can now be written as:

〈a, b |HU | c, d〉 = δmsa,mscδmsb,msdδma+mb,mc+md

∞∑
l=0

glm(a; c)glm(b; d)Rl(a, b; c, d),

(A.16)
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where the entire1 angular dependence is now contained in the Gaunt coeffi-
cients glm(a; c) and glm(b; d). The special cases 〈a, b |HU | a, b〉 and 〈a, b |HU | b, a〉
are also referred to as direct and exchange contribution, respectively. The
Gaunt coefficients may be used to calculate integrals over three spherical
harmonics (see previous section) as required in (A.10). They are related to
the Wigner 3-j symbol (A.1) as follows:

glm(a; c) = (−1)ma
√

[la][lc][l]
4π

(
la lc l
0 0 0

)(
la lc l
−ma mc m

)
, (A.17)

where m = ma −mc. A definition and some important properties of the
3-j symbol are given in the first section of this appendix. The remaining
radial integral Rl(a, b; c, d) is also referred to as Slater integral and reads:

Rl(a, b; c, d) =
∞∫
0

∞∫
0

dr1dr2r
2
1r

2
2
rl<
rl+1
>

Rnala(r1)Rnblb(r2)Rnclc(r1)Rndld(r2).

(A.18)
As a direct consequence of (A.4), the summation over l in (A.16) is finite
and reduces to integral values meeting the condition l ≤ min(la+ lc, lb+ ld).
According to la + lc is even or odd, l must only take even or odd values.
This can be seen from the symmetry property (A.6) of the 3-j symbol for

the special case of
(
la lc l
0 0 0

)
. When only scatter events in one orbital l′

are taken into account, l must take even integral values such that l ≤ 2l′.
For example, in the case of d-shell (l′ = 2) interaction the summation only
goes over the values l = 0, 2, 4.

The Coulomb Hamiltonian HU may be written in terms of creation
(annihilation) operators and a scattering amplitude Uabcd ≡ 〈a, b |HU | c, d〉:

Hloc =
∑
abcd

Uabcdc
†
ac
†
bcccd. (A.19)

Restricting (A.19) to scattering processes in a single orbital l and restoring
the notation from (2.10) yields the required expression for the impurity
model:

Hloc =
∑

mnpqσσ′

δm+n,p+q(−1)m+p[l]2c†mσc
†
nσ′cpσcqσ′×

2l∑
k=0

(
l l k
0 0 0

)2(
l l k
−m p m− p

)(
l l k
−n q n− q

)
Rk,

(A.20)

1The additional delta function δma+mb,mc+md in (A.16) is actually redundant, since
condition (A.15) is already contained in the Gaunt coefficients.
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where δmsa,mscδmsb,msd is consumed in the spin indices of the creation and
annihilation operators. The factor 4π

[l] from the series expansion (A.12)
cancels with factors from (A.17). The Kronecker delta δm+n,p+q is actually
redundant since it is already contained in the 3-j symbols.



Appendix B

Derivation of Bare Green’s
Functions using the
Equation of Motion Method

In this appendix we derive the solutions for the bare single-particle Green’s
function using the equation of motion method. We use these results in the
DMFT section.

B.1 Bare Green’s Function of the Hubbard Model
In the non-interacting limit (U = 0) the single-particle Green’s function can
be expressed analytically. In order to do that, we first define the lattice
Fourier transformation which takes the operators to momentum space:

cknσ = 1√
N

N∑
m=1

eiknrmcmσ, (B.1)

and the inverse transformation:

cmσ = 1√
N

N∑
n=1

e−iknrmcknσ. (B.2)

The above discrete Fourier transformation is valid on a lattice with N sites
defined by the lattice vectors ri and periodic boundary conditions1, such
that the momenta take the discrete values kn = 2πn

N . In the following we
1Formally, periodic boundary conditions, are expressed by the identification (N+ i) ∼

i.
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will use the short hand notation and simply write k when we actually mean
kn and for the corresponding sum we write

∑
k.

For U = 0 in a one dimensional lattice and with the lattice constant set
to one, the Hamiltonian takes the simple form:

H =− t
∑
〈m,n〉σ

c†mσcnσ

=− t
∑
mσ

[
c†mσcm+1,σ + c†mσcm−1,σ

]
=− t

∑
mσ

c†mσ
[
cm+1,σ + cm−1,σ

]
.

(B.3)

Plugging in the operators in momentum representation gives:

H =− t

N

∑
mσ

∑
kq

e−ikmc†kσ
(
eiq(m+1) + eiq(m−1))cqσ

=− t
∑
σ

∑
kq

1
N

∑
m

e−i(k−q)m︸ ︷︷ ︸
δkq

(
eiq + e−iq

)
c†kσcqσ

=−
∑
kσ

2t cos k c†kσckσ =
∑
kσ

εkc
†
kσckσ,

(B.4)

where we have used the orthogonality relation of the Fourier modes eikn
and cos k = eik+e−ik

2 . The resulting Hamiltonian is manifestly momentum
conserving, since it is diagonal in momentum space. This is a consequence
of the invariance under spatial translations, which we have employed im-
plicitly when we wrote the nearest neighbor site indices as n = m ± 1. It
is straightforward to generalize the above result for the dispersion relation
εk to a d-dimensional hyper-cubic lattice:

εk = −2t
d∑
i=1

cos ki. (B.5)

For arbitrary lattice topology the dispersion relation εk is given by the
lattice Fourier transformation of the corresponding hopping matrix tij :

εk = 1
N

∑
lm

ei(rl−rm)k tlm, (B.6)

with the inverse transformation given by:

tlm =
∑
k

e−i(rl−rm)k εk. (B.7)
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Starting from the definition of the Green’s function of the Hubbard Hamil-
tonian it is possible to derive an analytical expression for the non-interacting
case U = 0. Therefore we introduce the Heisenberg representation of the
momentum space operators:

ck(τ) = eHτ cke
−Hτ , c+

k (τ) = eHτ c†ke
−Hτ . (B.8)

Using the above result in the definition of the Green’s function yields:

G0
mnσ(τ) =− 〈Tτ cσm(τ)c†σn〉

=− 1
N

∑
kq

δkqe
−i(km−qn)〈Tτ ckσ(τ)c†qσ〉

=− 1
N

∑
k

e−ik(m−n)〈Tτ ckσ(τ)c†kσ〉

(B.9)

In the second line we enforce momentum conservation by inserting the
Kronecker delta δkq. In the last line we identify the momentum space
representation of the Green’s function:

G0
kσ(τ) = −〈Tτ ckσ(τ)c†kσ〉 = 1

N

∑
nm

eik(m−n)G0
mnσ(τ) (B.10)

We will also need the following version of the Heisenberg equation of motion:

∂A(τ)
∂τ

= ∂

∂τ
(eHτAe−Hτ )

=HeHτAe−Hτ − eHτAe−HτH
=eHτHe−HτeHτAe−Hτ − eHτAe−HτeHτHe−Hτ

=eHτ [H,A]e−Hτ = [H,A](τ).

(B.11)

Taking the τ -derivative of the Green’s function and employing the above
result gives:

∂

∂τ
G0
kσ(τ) =− 〈[H, ckσ](τ)c†kσ〉θ(τ)− 〈ckσ(τ)c†kσ〉δ(τ)

+ 〈c†kσ[H, ckσ](τ)〉θ(−τ)− 〈c†kσckσ(τ)〉δ(τ)

=− 〈Tτ [H, ckσ](τ)c†kσ〉 − 〈{ckσ(τ), c†kσ}︸ ︷︷ ︸
=1

〉δ(τ).
(B.12)
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For the commutator we get:

[H, ckσ] =
∑
qσ′

εq[c†qσ′cqσ′ , ckσ]

=
∑
qσ′

εq(c†qσ′cqσ′ckσ − ckσc
†
qσ′cqσ′)

=−
∑
qσ′

εq(c†qσ′ckσcqσ′ + ckσc
†
qσ′cqσ′)

=−
∑
qσ′

εq {c†qσ′ , ckσ}︸ ︷︷ ︸
δkqδσσ′

cqσ′ = −εkckσ

(B.13)

Using the result for the commutator and writing the Green’s function and
the delta function in terms of Matsubara frequencies gives for the r.h.s of
Eq.(B.12):

−〈Tτ [H, ckσ](τ)c†kσ〉 − δ(τ) = εk〈Tτ ckσ(τ)c†kσ〉 − δ(τ)
= −

∑
n

e−iωnτ (εkG0
kσ(iωn) + 1), (B.14)

and for the l.h.s. we find:∑
n

∂

∂τ
e−iωnτG0

kσ(iωn) = −
∑
n

iωne
−iωnτG0

kσ(iωn). (B.15)

By comparison of coefficients follows the desired result for the bare Green’s
function of the Hubbard Hamiltonian:

iωnG
0
kσ(iωn) = εkG

0
kσ(iωn) + 1

G0
kσ(iωn) = 1

iωn − εk
.

(B.16)

The extension to the multi-orbital case is straight forward:

G0
kα(iωn) = 1

iωn − εkα
. (B.17)

Using the inverse lattice Fourier transform Eq.(B.7) gives:

G0
ijα(iωn) = [iωn − tij ]−1. (B.18)

By employing Dyson’s equation, we get the following expression for the
interacting case:

Gkα(iωn) = 1
iωn − εkα − Σα(k, iωn) . (B.19)
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B.2 Bare Green’s Function of the Anderson Im-
purity Hamiltonian

Deriving the bare Green’s function G0 of the Anderson impurity Hamilto-
nian is very similar to the procedure above. The essential differences are
that we have now two kinds of operators, the impurity operators cσ and
the bath operators akσ. In the non-interacting limit the AIM Hamiltonian
takes the following form:

H = µ
∑
σ

c†σcσ +
∑
k,σ

εka
†
kσakσ +

∑
k,σ

(
V σ
k a
†
kσcσ + h.c.

)
. (B.20)

Our aim is to obtain an explicit expression for the bare impurity Green’s
function:

G0
σ(τ) = −〈Tτ cσ(τ)c†σ〉. (B.21)

Taking the τ -derivative gives, in complete analogy to above, the following
expression:

∂G0
σ(τ)
∂τ

= −〈Tτ [H, cσ](τ)c†σ〉 − δ(τ) (B.22)

Next we need to evaluate the commutator:
[H, cσ] =

∑
kσ′

εk[a†kσ′akσ′ , cσ] + µ
∑
σ′

[c†σ′cσ′ , cσ]

+
∑
kσ′

(V σ′
k [a†kσ′cσ′ , cσ] + V σ′∗

k [c†σ′akσ′ , cσ]).
(B.23)

The first commutator obviously vanishes, and the second one evaluates, in
complete analogy to the Hubbard Hamiltonian above, to:

µ
∑
σ′

[c†σ′cσ′ , cσ] = −µcσ. (B.24)

The third one vanishes:∑
kσ′

V σ′
k [a†kσ′cσ′ , cσ] =

∑
kσ′

V σ′
k (a†kσ′cσ′cσ − cσa

†
kσ′cσ′)

=
∑
kσ′

V σ′
k a†kσ′{cσ′ , cσ} = 0,

(B.25)

and for the last one we find:∑
kσ′

V σ′∗
k [c†σ′akσ′ , cσ] =

∑
kσ′

V σ′∗
k (c†σ′akσ′cσ − cσc

†
σ′akσ′)

=−
∑
kσ′

V σ′∗
k (c†σ′cσakσ′ + cσc

†
σ′akσ′)

=−
∑
kσ′

V σ′∗
k {c†σ′ , cσ}︸ ︷︷ ︸

δσσ′

akσ′ = −
∑
k

V σ∗
k akσ.

(B.26)
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Plugging this in gives:

∂G0
σ(τ)
∂τ

= µ 〈Tτ cσ(τ)c†σ〉︸ ︷︷ ︸
=−G0

σ(τ)

+
∑
k

V σ∗
k 〈Tτakσ(τ)c†σ〉︸ ︷︷ ︸

=−Fkσ(τ)

−δ(τ) (B.27)

The derivative of the mixed operator Green’s function Fkσ(τ) results in:
∂Fkσ(τ)
∂τ

= −〈Tτ [H, akσ](τ)c†σ〉 − δ(τ)〈{akσ, c†σ}︸ ︷︷ ︸
=0

〉, (B.28)

where the commutator evaluates to:

[H, akσ] = −εkakσ − V σ
k cσ (B.29)

Expressing the mixed operator Green’s function in terms of Matsubara
frequencies and substituting the above expression for the commutator gives:

−
∑
n

e−iωnτ (iωn − εk)Fkσ(iωn) = −
∑
n

e−iωnτV σ
k G0

σ(iωn) (B.30)

This allows to express the mixed operator Green’s function as:

Fkσ(iωn) = V σ
k

iωn − εk
G0
σ(iωn) (B.31)

The series expansion of Eq.(B.22) reads:

−
∑
n

e−iωnτ (iωn − µ)G0
σ(iωn) = −

∑
n

e−iωnτ
(∑

k

V σ∗
k Fkσ(iωn) + 1

)
(B.32)

Substituting Eq.(B.31) and comparing coefficients gives the explicit expres-
sion for the bare Green’s function of the AIM:

1 =
(
iωn − µ−

∑
k

|V σ
k |2

iωn − εk

)
G0
σ(iωn)

G0
σ(iωn) =

(
iωn − µ−

∑
k

|V σ
k |2

iωn − εk

)−1
(B.33)

Extension to the multi orbital case is again straight forward:

G0
α(iωn) =

(
iωn − µ−

∑
k

|V α
k |2

iωn − εk

)−1
(B.34)

and the Green’s function of the interacting system may be expressed as:

Gα(iωn) =
(
iωn − µ−

∑
k

|V α
k |2

iωn − εk
− Σα(k, iωn)

)−1
(B.35)



Appendix C

The Partition Function
Expansion

The purpose of this appendix is to demonstrate in detail how we obtain the
partition function expansion given in Eq.(4.3).

By splitting the Hamiltonian

H = Ha +Hb, (C.1)

and introducing an interaction representation in which the imaginary time
evolution of operators O is given by Ha:

O(τ) = eHaτOe−Haτ . (C.2)

the partition function may be written as:

Z = Tr
[
e−βH

]
= Tr

[
e−βHa eβHae−βH︸ ︷︷ ︸

U(β)

]
(C.3)

We want to express the operator U(β) in terms of Hb. First we differentiate
it w.r.t. β and keep in mind that H and Ha generally do not commute:

dU(β)
dβ = HaU(β)− eβHaHe−βH

= HaU(β)− eβHa(Ha +Hb)e−βHa eβHae−βH︸ ︷︷ ︸
U(β)

= HaU(β)−HaU(β)−HbU(β) = −HbU(β)

(C.4)

Since we know that U(0) = I we can integrate the resulting differential
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equation

U(β)− U(0) = −
β∫

0

dτHb(τ)U(τ)

U(β) = I −
β∫

0

dτHb(τ)U(τ).

(C.5)

Iterating this integral equation gives the Dyson series for U(β)[33]:

U(β) =I −
β∫

0

dτHb(τ) + (−1)2
β∫

0

dτ1Hb(τ1)
τ1∫

0

dτ2Hb(τ2) . . .

+ (−1)n
β∫

0

dτ1Hb(τ1)
τ1∫

0

dτ2Hb(τ2) . . .
τn−1∫
0

dτnHb(τn) . . .

(C.6)

It is important to note that the various factors of H(τi) are ordered such
that greater values of τ stand on the left. We therefore can use the ordering
symbol Tτ to simplify the above expression considerably. A nth order term
can be written as
β∫

0

dτ1

τ1∫
0

dτ2 . . .

τn−1∫
0

dτnHb(τ1) . . . Hb(τn) = 1
n!

β∫
0

dτ1 . . .

β∫
0

dτnTτHb(τ1) . . . Hb(τn),

(C.7)
where we used the fact that the integral on the right-hand side counts
everything n! times, since the integrand is symmetric about the hyper-
plane τ1 = τ2 = . . . = τn [34]. We can now write U(β) in a very compact
form:

U(β) =
∞∑
n=0

(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτnTτHb(τ1) . . . Hb(τn) ≡ Tτe
−
∫ β

0 dτHb(τ).

(C.8)

By plugging the above result into Eq.(C.3) gives:

Z = Tr
[
e−βHaTτe

−
∫ β

0 dτHb(τ)
]

= Tr

e−βHa ∞∑
k=0

(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτnTτHb(τ1) . . . Hb(τn)

 . (C.9)
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Using the linear property of the trace allows us to pull the sums in the
front of the trace such that we finally obtain the desired expression for the
partition function expansion:

Z =
∞∑
n=0

β∫
0

dτ1 . . .

β∫
0

dτn
(−1)n

n! Tr
[
Tτe

−(β−τ1)HaHb . . . e
−(τn−1−τk)HaHbe

−τnHa
]
.(C.10)



Appendix D

The Derivative of a
Determinant

As starting point we use the Jacobi formula which gives the first derivative
of the determinant of a matrix:

∂

∂Aab
detA = detA(A−1)ba. (D.1)

To get the second derivative we obviously have to apply Jacobi’s formula
recursively:

∂2

∂Aij∂Akl
detA = ∂

∂Akl
(det(A)A−1

ji )

= ∂

∂Akl
(det(A))A−1

ji + det(A)
A−1
ji

∂Akl
.

(D.2)

Now we are faced the problem of taking the derivative of the inverse matrix
which we obtain as follows:

(AA−1) = I
(AA−1)′ = I′ = 0
(AA−1)′ = A′A−1 +A(A−1)′ = 0

(A−1)′ = −A−1A′A−1.

(D.3)

Inserting this into the equation above gives:

∂2

∂Aij∂Akl
detA = detA

[
(A−1)lk(A−1)ji − (A−1)ad(A−1)cb

]
. (D.4)
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Appendix E

Hirsch-Fye Method

Prior to continuous-time solvers the discrete time algorithm due to Hirsch
and Fye [16] established as the standard method in the simulation of quan-
tum impurity models. The Hirsch-Fye algorithm is based on a discretization
of the τ -interval [0, β) and the introduction of an auxiliary Ising spin field
that allows to decouple the interaction term HU = Un↑n↓ in the impurity
model Hamiltonian of Eq.(2.10). As a first step the Hamiltonian of the
AIM is rewritten as H = H0 +HI , where:

H0 =
(
µ+ U

2
)∑

σ

nσ +
∑
k,σ

εka
†
kσakσ +

∑
k,σ

(V σ
k a
†
kσcσ + h.c.), (E.1)

HI = U [n↑n↓ −
1
2(n↑ + n↓)]. (E.2)

By applying a so-called Trotter discretization the imaginary time interval
[0, β) is broken into M slices of equal length ∆τ = β

M . Now the partition
function is written as the following product:

Z = Tr e−βH = Tr
M∏
i=1

e−∆τ(H0+HI) ≈ Tr
M∏
i=1

e−∆τH0e−∆τHI . (E.3)

In the last step we have used the Trotter-Suzuki formula and neglected
terms of O[∆τ2]. This results in a systematic error because e−∆τH0e−∆τHI

rather than e−∆τH is used for the time evolution between the time slices.
The central idea is now to introduce an auxiliary spin field on each time
slice to decouple the interaction term:

e−∆τU(n↑n↓−(n↑+n↓)/2) = 1
2
∑
si=±1

eλsi(n↑n↓), (E.4)
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with coshλ = e
1
2 ∆τU . Substituting the above expression into Eq.(E.3) al-

lows, after some manipulation [15], to write the partition function in the
following form:

Z =
∑
{sj}

∏
σ=±1

det[G{sj}σ ]−1, (E.5)

where the Green’s function G
{si}
σ that corresponds to a particular field

configuration {si} is given by the Dyson equation:

G{si}σ = G0
σ + G0

σ(I− eλW
{si}
σ )G{si}σ , (E.6)

with W
{si}
σ = diag(σsi). The sum of Eq.(E.5) is sampled over the 2M

dimensional space of configurations C = {s} with weight
∏

σ=±1
det[G{si}σ ]−1.

This method comes, however, with several drawbacks. First of all, the
discretization introduces an systematic error. Furthermore the requirement
of an equally spaced τ -grid makes the access to low temperatures numeri-
cally expensive. Decoupling arbitrary interactions with an auxiliary field is
problematic which makes the method practicable for density-density type
interactions only. These drawbacks were some of the motivations to look
for alternatives leading to continuous-time methods.


