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Introduction



  

Energy Conditions

Constraints on the energy-momentum tensor (EMT) which are necessary to proof 
certain theorems in general relativity. (area theorem, singularity theorems, ...)

QNEC is the only known local energy condition which holds in any QFT. 



  

Quantum Null Energy Condition

[picture source: Bousso-Fisher-Leichenauer-Wall 1512.06109]

Note that S'' can have either sign:

●               QNEC equivalent to NEC

●               QNEC stronger than NEC

●               QNEC weaker than NEC



  

Current Status of QNEC in d>2

There exist several proofs:

[Koeller and Leichenauer 1512.06109]

[Balakrishnan, Faulkner, Khandker and Wang 1706.09432]

[Bousso, Fisher, Koeller, Leichenauer, and Wall 1509.02542]● Free bosonic field theories 
● Holographic field theories 
● General QFTs 
● In d>2 QNEC was conjectured to saturate for all states

[Leichenauer, Levine, Shahbazi and Moghaddam 1802.02584]



  

QNEC in CFT2

● In two dimensions QNEC is stronger than in higher dimensions.

● In d=2 QNEC does not need to saturate.

● Interesting question: Under which condition does it/does it not saturate?

● We will study this question using holography.

[Khandker-Kundu-Li 1803.03997]



  

QNEC saturation for all Bañados 
geometries



  

Bañados geometries

States dual to Bañados geometries:

AdS/CFT relates Bañados geometries to excited CFT2 states                

global AdS:  Poincaré patch AdS: BTZ:

We consider a CFT2 on a cylinder in the large central charge limit

Most general solution of 3D vacuum Einstein gravity with AdS boundary conditions. 



  

Uniformization and Hill's equation

All Bañados metrics are locally Poincaré patch AdS3

The functions       are solutions to Hill's equation

The two independent solutions are normalized to unit Wronskian



  

Holographic entanglement entropy  
in AdS3/CFT2

HEE factorizes into a sum of holomorphic and anti-holomorphic contributions

Example: Entanglement entropy of the Poincaré patch vacuum

To compute entanglement entropy one has to solve Hill's equation for a given 
function               that describes the state and boundary conditions for        
encoding the entangling region.

[Sheikh-Jabbari and Yavartanoo 1605.00341]



  

Bañados geometries saturate QNEC

After defining

and using the fact that        solve Hill's equation which gives

we find that QNEC saturates for all states dual to Bañados geometries



  

QNEC non-saturation in presence of 
bulk matter



  

Holographic model: AdS-Vaidya geometry

QNEC in a globally quenched state

Global quench from vacuum to a thermal state of temperature                               .

QNEC does not saturate if the RT-surface crosses bulk matter                             .



  

Divergence and half-saturation

Full numeric solutionPerturbative solution

Perturbative calculation with                       for            gives 

● QNEC diverges when geodesic dip crosses the matter shell at 

● QNEC half-saturates for large separation:  



  

Finite-c corrections to QNEC



  

Quantum corrections to HEE

… usual area contribution form the Ryu-Takayanagi surface

… shift in the RT-surface due to quantum backreaction

… bulk entanglement entropy for region enclosed by the RT-surface

[Faulkner, Lewkowycz, and Maldacena 1307.2892]

For QNEC we need to compute all these contributions as functions of a 
parameter parametrizing the light like deformation of the entangling region.



  

Quantum backreaction from bulk 
scalar field

Single particle quantum field in AdS3 dual to a CFT2 primary state of weight h

Bulk energy momentum tensor

(BF bound)

Evaluated for a single particle excited state 



  

Quantum backreacted geometry

The leading order quantum correction to the geometry follows form solving the semi-
classical Einstein equations

The quantum corrected holographic energy momentum tensor is given by

The geometry that solves the semi-classical Einstein equations is known



  

Area contribution

One has to extremize the area functional on the backreacted geometry with 
boundary conditions parametrizing the light-like deformation of the entangling region.

A long and tedious calculation gives a closed form solution for the RT-part to 
entanglement entropy (in agreement with                                                    )

The corresponding RT-part for QNEC

[Belin, Iqbal, and Lokhande 1805.08782]



  

Bulk entanglement contribution

Here we restrict to small entangling regions, such that the entropy can be computed 
from the expectation value of the vacuum modular Hamiltonian.

The expectation value of the modular Hamiltonian can be expressed as an integral 
in Rindler coordinates.

For the total (RT+bulk) contribution in the small expansion we obtain

Needs to be evaluated in a boosted frame that realizes the light like shift of the 
entangling region. (result on next page)

[Belin, Iqbal, and Lokhande 1805.08782]



  

QNEC for the small regions



  

Summary

● All quantum states dual to Bañados (vacuum) geometries saturate QNEC.

● But not all states in CFT2 saturate QNEC.

● QNEC does not saturate when the RT-surface crosses bulk matter.

● For the Vaidya quench this leads to QNEC half saturation of large 
entangling regions and infinities when the surface enters the matter shell.

● Including finite-c (quantum-gravity) corrections in the bulk requires to 
compute bulk entanglement and quantum backreacted RT-surfaces.

● Quantum corrections induce small deviations from QNEC saturation.



  

QNEC from semi-classical Gravity

Christian Ecker (TU-Wien) Vienna, Sep. 7, 2018                 16/24 

[Bousso-Fisher-Koeller-Leichenauer-Wall 1506.02669]

Generalized second law                    requires introduction of generalized entropy

Generalized entropy for general surface allows to define quantum expansion

Allows to uplifted the focusing theorem to the semi-classical Quantum Focusing Conjecture

For vanishing shear and classical expansion this gives QNEC



  

Example: Steady State Formation

Christian Ecker (TU-Wien) Vienna, Sep. 7, 2018          21/24 
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